
Last chance! 50% off unlimited learning
Sale ends in
translogCalc( xNames, data, coef, shifterNames = NULL,
dataLogged = FALSE )
n
exogenous variables in xNames
and m
shifter variables in shifterNames
,
the n+1
alpha coefficients must have names
data
already logged?dataLogged
is TRUE
),
the endogenous variable is returned as logarithm;
non-logarithmic values are returned otherwise.translogEst
and translogDeriv
.data( germanFarms )
# output quantity:
germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
# quantity of variable inputs
germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput
# a time trend to account for technical progress:
germanFarms$time <- c(1:20)
# estimate a Translog production function
estResult <- translogEst( "qOutput", c( "qLabor", "land", "qVarInput", "time" ),
germanFarms )
translogCalc( c( "qLabor", "land", "qVarInput", "time" ), germanFarms,
coef( estResult ) )
#equal to estResult$fitted
Run the code above in your browser using DataLab