data(nhanes)
imp <- mice(nhanes)
fit <- lm.mids(bmi~hyp+chl,data=imp)
pool(fit)
# Call: pool(object = fit)
# Pooled coefficients:
# (Intercept) hyp chl
# 21.29782 -1.751721 0.04085703
#
# Fraction of information about the coefficients missing due to nonrespons
# e:
# (Intercept) hyp chl
# 0.1592247 0.1738868 0.3117452
#
# > summary(pool(fit))
# est se t df Pr(>|t|)
# (Intercept) 21.29781702 4.33668150 4.9110863 16.95890 0.0001329371
# hyp -1.75172102 2.30620984 -0.7595671 16.39701 0.4582953905
# chl 0.04085703 0.02532914 1.6130442 11.50642 0.1338044664
# lo 95 hi 95 missing fmi
# (Intercept) 12.14652927 30.4491048 NA 0.1592247
# hyp -6.63106456 3.1276225 8 0.1738868
# chl -0.01459414 0.0963082 10 0.3117452
Run the code above in your browser using DataLab