Rdocumentation
powered by
Learn R Programming
mice (version 1.21)
mice.impute.norm: Elementary Imputation Method: Linear Regression Analysis
Description
Imputes univariate missing data using linear regression analysis
Usage
mice.impute.norm(y, ry, x)
Arguments
y
Incomplete data vector of length n
ry
Vector of missing data pattern (FALSE=missing, TRUE=observed)
x
Matrix (n x p) of complete covariates.
Value
A vector of length nmis with imputations.
Details
Draws values of beta and sigma for Bayesian linear regression imputation of y given x according to Rubin p. 167.
References
Van Buuren, S., Groothuis-Oudshoorn, C.G.M. (2000)
Multivariate Imputation by Chained Equations: MICE V1.0 User's manual.
Leiden: TNO Quality of Life.
http://www.stefvanbuuren.nl/publications/MICE V1.0 Manual TNO00038 2000.pdf
Brand, J.P.L. (1999)
Development, implementation and evaluation of multiple imputation strategies for the statistical analysis of incomplete data sets.
Dissertation. Rotterdam: Erasmus University. Schafer, J.L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.