mice.impute.ri: Imputation by the random indicator method for nonignorable data
Description
Imputes univariate missing data using the random
indicator method. This method estimates an offset between
the distribution of the observed and missing data using
an algorithm that iterates over the response model and
the imputation model.
Usage
mice.impute.ri(y, ry, x, ri.maxit = 10, ...)
Arguments
y
Incomplete data vector of length n
ry
Vector of missing data pattern
(FALSE=missing, TRUE=observed)
x
Matrix (n x p) of complete
covariates.
ri.maxit
Number of inner iterations
...
Other named arguments passed down to
.norm.draw()
Value
A vector of length nmis with imputations.
References
Jolani, S. (2012). Dual Imputation Strategies for
Analyzing Incomplete Data. Disseration. University of
Utrecht, Dec 7 2012.
http://igitur-archive.library.uu.nl/dissertations/2012-1120-200602/Jolani.pdf