mice.impute.cart(y, ry, x, minbucket = 5, cp = 1e-04, ...)
y
(TRUE
=
observed, FALSE
= missing)length(y)
rows and
p
columns containing complete covariates.rpart.control
for details.rpart.control
for details.rpart()
.sum(!ry)
with imputationsy
by classification and regression
trees. The procedure is as follows: ymis
, find the terminal
node they end up according to the fitted tree;Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classification and regression trees, Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
Van Buuren, S.(2012), Flexible imputation of missing data, Boca Raton, FL: Chapman & Hall/CRC.
mice
, mice.impute.rf
,
rpart
,
rpart.control
require(rpart)
require(lattice)
imp <- mice(nhanes2, meth = "cart", minbucket = 4)
plot(imp)
Run the code above in your browser using DataLab