Learn R Programming

mice (version 2.2)

mice.impute.polyreg: Imputation by Polytomous Regression

Description

Imputes missing data in a categorical variable using polytomous regression

Usage

mice.impute.polyreg(y, ry, x)

Arguments

y
Incomplete data vector of length n
ry
Vector of missing data pattern (FALSE=missing, TRUE=observed)
x
Matrix (n x p) of complete covariates.

Value

  • A vector of length nmis with imputations.

Details

Imputation for categorical response variables by the Bayesian polytomous regression model. See J.P.L. Brand (1999), Chapter 4, Appendix B. The method consists of the following steps:
  1. Fit categorical response as a multinomial model
  2. Compute predicted categories
  3. Add appropriate noise to predictions.
This algorithm uses the function multinom() from the libraries nnet (Venables and Ripley).

References

Van Buuren, S., Groothuis-Oudshoorn, K. (2009) MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, forthcoming. http://www.stefvanbuuren.nl/publications/MICE in R - Draft.pdf Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies for the statistical analysis of incomplete data sets. Dissertation. Rotterdam: Erasmus University. Venables, W.N. & Ripley, B.D. (1997). Modern applied statistics with S-Plus (2nd ed). Springer, Berlin.

See Also

mice, multinom