mice(data, m = 5, method = vector("character", length = ncol(data)),
predictorMatrix = (1 - diag(1, ncol(data))),
visitSequence = (1:ncol(data))[apply(is.na(data), 2, any)],
form = vector("character", length = ncol(data)),
post = vector("character", length = ncol(data)), defaultMethod = c("pmm",
"logreg", "polyreg", "polr"), maxit = 5, diagnostics = TRUE,
printFlag = TRUE, seed = NA, imputationMethod = NULL,
defaultImputationMethod = NULL, data.init = NULL, ...)
NA
.m=5
.ncol(data)
, specifying the elementary imputation method to be
used for each column in data. If specified as a single string, the same
method will be used for all columns. The ncol(data)
containing
0/1 data specifying the set of predictors to be used for each target column.
Rows correspond to target variables (i.e. variables to be imputed), in the
sequence as they appear in data. A value of ncol(data)
, specifying
expressions. Each string is parsed and executed within the sampler()
function to postprocess imputed values. The default is to do nothing,
indicated by a vector of empty strncol(data)
, specifying
formulae. Each string is parsed and executed within the sampler()
function to create terms for the predictor. The default is to do nothing,
indicated by a vector of empty stTRUE
, diagnostic information
will be appended to the value of the function. If FALSE
, only the
imputed data are saved. The default is TRUE
.TRUE
, mice
will print history on console.
Use print=FALSE
for silent computation.set.seed()
for
offsetting the random number generator. Default is to leave the random number
generator alone.method
argument. Included for
backwards compatibility.defaultMethod
argument.
Included for backwards compatibility.data
,
without missing data, used to initialize imputations before the start of the
iterative process. The default NULL
implies that starting imputation
are created by a simple random dramids
(multiply imputed data set)~
A separate univariate imputation model can be specified for each column. The default imputation method depends on the measurement level of the target column. In addition to these, several other methods are provided. You can also write their own imputation functions, and call these from within the algorithm.
The data may contain categorical variables that are used in a regressions on
other variables. The algorithm creates dummy variables for the categories of
these variables, and imputes these from the corresponding categorical
variable. The extended model containing the dummy variables is called the
padded model. Its structure is stored in the list component pad
.
Built-in elementary imputation methods are:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
These corresponding functions are coded in the mice
library under
names mice.impute.method
, where method
is a string with the
name of the elementary imputation method name, for example norm
. The
method
argument specifies the methods to be used. For the j
'th
column, mice()
calls the first occurence of
paste('mice.impute.',method[j],sep='')
in the search path. The
mechanism allows uses to write customized imputation function,
mice.impute.myfunc
. To call it for all columns specify
method='myfunc'
. To call it only for, say, column 2 specify
method=c('norm','myfunc','logreg',...
)
mice
:
Multivariate Imputation by Chained Equations in R
. Journal of
Statistical Software, 45(3), 1-67.
van Buuren, S. (2012). Flexible Imputation of Missing Data. Boca Raton, FL: Chapman & Hall/CRC Press.
Van Buuren, S., Brand, J.P.L., Groothuis-Oudshoorn C.G.M., Rubin, D.B. (2006) Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76, 12, 1049--1064.
Van Buuren, S. (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research, 16, 3, 219--242.
Van Buuren, S., Boshuizen, H.C., Knook, D.L. (1999) Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine, 18, 681--694.
Brand, J.P.L. (1999) Development, implementation and evaluation of multiple imputation strategies for the statistical analysis of incomplete data sets. Dissertation. Rotterdam: Erasmus University.
mids
, with.mids
,
set.seed
, complete
# do default multiple imputation on a numeric matrix
imp <- mice(nhanes)
imp
# list the actual imputations for BMI
imp$imputations$bmi
# first completed data matrix
complete(imp)
# imputation on mixed data with a different method per column
mice(nhanes2, meth=c('sample','pmm','logreg','norm'))
Run the code above in your browser using DataLab