mice.impute.2l.norm(y, ry, x, type, intercept = TRUE, ...)
n
FALSE
=missing,
TRUE
=observed)n
x p
) of complete covariates.ncol(x)
identifying random and class
variables. Random variables are identified by a '2'. The class variable
(only one is allowed) is coded as '-2'. Random variables also include the
fixed effect.nmis
with imputations.
The random intercept is automatically added in mice.impute.2L.norm()
.
A model within a random intercept can be specified by mice(...,
intercept = FALSE)
.
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice
: Multivariate
Imputation by Chained Equations in R
. Journal of Statistical
Software, 45(3), 1-67. http://www.jstatsoft.org/v45/i03/
Van Buuren, S. (2011) Multiple imputation of multilevel data. In Hox, J.J. and and Roberts, J.K. (Eds.), The Handbook of Advanced Multilevel Analysis, Chapter 10, pp. 173--196. Milton Park, UK: Routledge.