Imputes the arithmetic mean of the observed data
mice.impute.mean(y, ry, x = NULL, wy = NULL, ...)Vector to be imputed
Logical vector of length length(y) indicating the
the subset y[ry] of elements in y to which the imputation
model is fitted. The ry generally distinguishes the observed
(TRUE) and missing values (FALSE) in y.
Numeric design matrix with length(y) rows with predictors for
y. Matrix x may have no missing values.
Logical vector of length length(y). A TRUE value
indicates locations in y for which imputations are created.
Other named arguments.
Vector with imputed data, same type as y, and of length
sum(wy)
Imputing the mean of a variable is almost never appropriate. See Little and Rubin (2002, p. 61-62) or Van Buuren (2012, p. 10-11)
Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice:
Multivariate Imputation by Chained Equations in R. Journal of
Statistical Software, 45(3), 1-67.
https://www.jstatsoft.org/v45/i03/
Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. New York: John Wiley and Sons.
Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.
Other univariate imputation functions:
mice.impute.cart(),
mice.impute.lda(),
mice.impute.logreg.boot(),
mice.impute.logreg(),
mice.impute.midastouch(),
mice.impute.mnar.logreg(),
mice.impute.norm.boot(),
mice.impute.norm.nob(),
mice.impute.norm.predict(),
mice.impute.norm(),
mice.impute.pmm(),
mice.impute.polr(),
mice.impute.polyreg(),
mice.impute.quadratic(),
mice.impute.rf(),
mice.impute.ri()