The D2-statistic pools test statistics from the repeated analyses. The method is less powerful than the D1- and D3-statistics.
D2(fit1, fit0 = NULL, use = "wald")
An object of class mira
, produced by with()
.
An object of class mira
, produced by with()
. The
model in fit0
is a nested within fit1
. The default null
model fit0 = NULL
compares fit1
to the intercept-only model.
A character string denoting Wald- or likelihood-based based tests. Can be either "wald"
or "likelihood"
. Only used if method = "D2"
.
Li, K. H., X. L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991. Significance Levels from Repeated p-Values with Multiply-Imputed Data. Statistica Sinica 1 (1): 65–92.
https://stefvanbuuren.name/fimd/sec-multiparameter.html#sec:chi
testModels
# Compare two linear models:
imp <- mice(nhanes2, seed = 51009, print = FALSE)
mi1 <- with(data = imp, expr = lm(bmi ~ age + hyp + chl))
mi0 <- with(data = imp, expr = lm(bmi ~ age + hyp))
D2(mi1, mi0)
# \donttest{
# Compare two logistic regression models
imp <- mice(boys, maxit = 2, print = FALSE)
fit1 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc + reg, family = binomial))
fit0 <- with(imp, glm(gen > levels(gen)[1] ~ hgt + hc, family = binomial))
D2(fit1, fit0)
# }
Run the code above in your browser using DataLab