library(miceFast)
library(dplyr)
library(data.table)
### Data
# airquality dataset with additional variables
data(air_miss)
### Intro: dplyr
# IMPUTATIONS
air_miss <- air_miss %>%
# Imputations with a grouping option (models are separately assessed for each group)
# taking into account provided weights
group_by(groups) %>%
do(mutate(., Solar_R_imp = fill_NA(
x = .,
model = "lm_pred",
posit_y = "Solar.R",
posit_x = c("Wind", "Temp", "Intercept"),
w = .[["weights"]]
))) %>%
ungroup() %>%
# Imputations - discrete variable
mutate(x_character_imp = fill_NA(
x = .,
model = "lda",
posit_y = "x_character",
posit_x = c("Wind", "Temp")
)) %>%
# logreg was used because almost log-normal distribution of Ozone
# imputations around mean
mutate(Ozone_imp1 = fill_NA(
x = .,
model = "lm_bayes",
posit_y = "Ozone",
posit_x = c("Intercept"),
logreg = TRUE
)) %>%
# imputations using positions - Intercept, Temp
mutate(Ozone_imp2 = fill_NA(
x = .,
model = "lm_bayes",
posit_y = 1,
posit_x = c(4, 6),
logreg = TRUE
)) %>%
# multiple imputations (average of x30 imputations)
# with a factor independent variable, weights and logreg options
mutate(Ozone_imp3 = fill_NA_N(
x = .,
model = "lm_noise",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .[["weights"]],
logreg = TRUE,
k = 30
)) %>%
mutate(Ozone_imp4 = fill_NA_N(
x = .,
model = "lm_bayes",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .[["weights"]],
logreg = TRUE,
k = 30
)) %>%
group_by(groups) %>%
do(mutate(., Ozone_imp5 = fill_NA(
x = .,
model = "lm_pred",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .[["weights"]],
logreg = TRUE
))) %>%
do(mutate(., Ozone_imp6 = fill_NA_N(
x = .,
model = "pmm",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .[["weights"]],
logreg = TRUE,
k = 20
))) %>%
ungroup() %>%
# Average of a few methods
mutate(Ozone_imp_mix = rowMeans(select(., starts_with("Ozone_imp")))) %>%
# Protecting against collinearity or low number of observations - across small groups
# Be carful when using a grouping option
# because of lack of protection against collinearity or low number of observations.
# There could be used a tryCatch(fill_NA(...),error=function(e) return(...))
group_by(groups) %>%
do(mutate(., Ozone_chac_imp = tryCatch(
fill_NA(
x = .,
model = "lda",
posit_y = "Ozone_chac",
posit_x = c(
"Intercept",
"Month",
"Day",
"Temp",
"x_character_imp"
),
w = .[["weights"]]
),
error = function(e) .[["Ozone_chac"]]
))) %>%
ungroup()
# Sample of results
air_miss[which(is.na(air_miss[, 1]))[1:5], ]
### Intro: data.table
# IMPUTATIONS
# Imputations with a grouping option (models are separately assessed for each group)
# taking into account provided weights
data(air_miss)
setDT(air_miss)
air_miss[, Solar_R_imp := fill_NA_N(
x = .SD,
model = "lm_bayes",
posit_y = "Solar.R",
posit_x = c("Wind", "Temp", "Intercept"),
w = .SD[["weights"]],
k = 100
), by = .(groups)] %>%
# Imputations - discrete variable
.[, x_character_imp := fill_NA(
x = .SD,
model = "lda",
posit_y = "x_character",
posit_x = c("Wind", "Temp", "groups")
)] %>%
# logreg was used because almost log-normal distribution of Ozone
# imputations around mean
.[, Ozone_imp1 := fill_NA(
x = .SD,
model = "lm_bayes",
posit_y = "Ozone",
posit_x = c("Intercept"),
logreg = TRUE
)] %>%
# imputations using positions - Intercept, Temp
.[, Ozone_imp2 := fill_NA(
x = .SD,
model = "lm_bayes",
posit_y = 1,
posit_x = c(4, 6),
logreg = TRUE
)] %>%
# model with a factor independent variable
# multiple imputations (average of x30 imputations)
# with a factor independent variable, weights and logreg options
.[, Ozone_imp3 := fill_NA_N(
x = .SD,
model = "lm_noise",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .SD[["weights"]],
logreg = TRUE,
k = 30
)] %>%
.[, Ozone_imp4 := fill_NA_N(
x = .SD,
model = "lm_bayes",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .SD[["weights"]],
logreg = TRUE,
k = 30
)] %>%
.[, Ozone_imp5 := fill_NA(
x = .SD,
model = "lm_pred",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .SD[["weights"]],
logreg = TRUE
), .(groups)] %>%
.[, Ozone_imp6 := fill_NA_N(
x = .SD,
model = "pmm",
posit_y = "Ozone",
posit_x = c("Intercept", "x_character_imp", "Wind", "Temp"),
w = .SD[["weights"]],
logreg = TRUE,
k = 10
), .(groups)] %>%
# Average of a few methods
.[, Ozone_imp_mix := apply(.SD, 1, mean), .SDcols = Ozone_imp1:Ozone_imp6] %>%
# Protecting against collinearity or low number of observations - across small groups
# Be carful when using a data.table grouping option
# because of lack of protection against collinearity or low number of observations.
# There could be used a tryCatch(fill_NA(...),error=function(e) return(...))
.[, Ozone_chac_imp := tryCatch(
fill_NA(
x = .SD,
model = "lda",
posit_y = "Ozone_chac",
posit_x = c(
"Intercept",
"Month",
"Day",
"Temp",
"x_character_imp"
),
w = .SD[["weights"]]
),
error = function(e) .SD[["Ozone_chac"]]
), .(groups)]
# Sample of results
air_miss[which(is.na(air_miss[, 1]))[1:5], ]
Run the code above in your browser using DataLab