#############################################################################
# EXAMPLE 1: Nested multiple imputation and conversion into an object of class
# NestedImputationList
#############################################################################
library(BIFIEsurvey)
data(data.timss2 , package="BIFIEsurvey" )
datlist <- data.timss2
# remove first four variables
M <- length(datlist)
for (ll in 1:M){
datlist[[ll]] <- datlist[[ll]][ , -c(1:4) ]
}
# nested multiple imputation using mice
imp1 <- mice.nmi( datlist , m=3 , maxit=2 )
summary(imp1)
# create object of class NestedImputationList
datlist1 <- mids2datlist( imp1 )
datlist1 <- NestedImputationList( datlist1 )
# estimate linear model using with
res1 <- with( datlist1 , lm( ASMMAT ~ female + migrant ) )
# pool results
mres1 <- MIcombine( res1 )
summary(mres1)
coef(mres1)
vcov(mres1)
Run the code above in your browser using DataLab