#############################################################################
# EXAMPLE 1: Nested multiple imputation and dataset extraction for TIMSS data
#############################################################################
library(BIFIEsurvey)
data(data.timss2 , package="BIFIEsurvey" )
datlist <- data.timss2
# remove first four variables
M <- length(datlist)
for (ll in 1:M){
datlist[[ll]] <- datlist[[ll]][ , -c(1:4) ]
}
#***************
# (1) nested multiple imputation using mice
imp1 <- mice.nmi( datlist , m=4 , maxit=3 )
summary(imp1)
#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- mice.nmi( datlist , Nimp=4 , burnin=10 ,iter=22, type="mice.1chain")
summary(imp2)
#**************
# extract dataset for third orginal dataset the second within imputation
dat32a <- complete.mids.nmi( imp1 , action = c(3,2) )
dat32b <- complete.mids.nmi( imp2 , action = c(3,2) )
#############################################################################
# EXAMPLE 2: Imputation from one chain and extracting dataset for nhanes data
#############################################################################
library(mice)
data(nhanes, package="mice")
# nhanes data in one chain
imp1 <- mice.1chain( nhanes , burnin=5 , iter=40 , Nimp=4 ,
imputationMethod=rep("norm" , 4 ) )
# extract first imputed dataset
dati1 <- complete.mids.1chain( imp1 , action=1 )
Run the code above in your browser using DataLab