Learn R Programming

miceadds (version 1.5-0)

data.ma: Example Datasets for miceadds Package

Description

Example datasets for miceadds package.

Usage

data(data.ma01)
data(data.ma02)
data(data.ma03)
data(data.ma04)
data(data.ma05)
data(data.ma06)

Arguments

format

  • Datasetdata.ma01: Dataset with students nested within school and student weights (studwgt). The format is'data.frame': 4073 obs. of 11 variables: $ idstud : num 1e+07 1e+07 1e+07 1e+07 1e+07 ... $ idschool: num 1001 1001 1001 1001 1001 ... $ studwgt : num 6.05 6.05 5.27 5.27 6.05 ... $ math : int 594 605 616 524 685 387 536 594 387 562 ... $ read : int 647 651 539 551 689 502 503 597 580 576 ... $ migrant : int 0 0 0 1 0 0 1 0 0 0 ... $ books : int 6 6 5 2 6 3 4 6 6 5 ... $ hisei : int NA 77 69 45 66 53 43 NA 64 50 ... $ paredu : int 3 7 7 2 7 3 4 NA 7 3 ... $ female : int 1 1 0 0 1 1 0 0 1 1 ... $ urban : num 1 1 1 1 1 1 1 1 1 1 ...
  • Datasetdata.ma02: 10 multiply imputed datasets of incomplete datadata.ma01. The format isList of 10 $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables: $ :'data.frame': 4073 obs. of 11 variables:
  • Datasetdata.ma03: This dataset contains one variablemath_EAPfor which a conditional posterior distribution with EAP and its associated standard deviation is available.'data.frame': 120 obs. of 8 variables: $ idstud : int 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 ... $ female : int 0 1 1 1 1 0 1 1 1 1 ... $ migrant : int 1 1 0 1 1 0 0 0 1 0 ... $ hisei : int 44 NA 26 NA 32 60 31 NA 34 26 ... $ educ : int NA 2 NA 1 4 NA 2 NA 2 NA ... $ read_wle : num 74.8 78.1 103.2 81.2 119.2 ... $ math_EAP : num 337 342 264 285 420 ... $ math_SEEAP: num 28 29.5 28.6 28.5 27.5 ...
  • Datasetdata.ma04: This dataset contains two hypothetical scalesAandBand single variablesV5,V6andV7.'data.frame': 281 obs. of 13 variables: $ group: int 1 1 1 1 1 1 1 1 1 1 ... $ A1 : int 2 2 2 1 1 3 3 NA 2 1 ... $ A2 : int 2 2 2 3 1 2 4 4 4 4 ... $ A3 : int 2 3 3 4 1 3 2 2 2 4 ... $ A4 : int 3 4 6 4 7 5 3 5 5 1 ... $ V5 : int 2 2 5 5 4 3 4 1 3 4 ... $ V6 : int 2 5 5 1 1 3 2 2 2 4 ... $ V7 : int 6 NA 4 5 6 2 5 5 6 7 ... $ B1 : int 7 NA 6 4 5 2 5 7 3 7 ... $ B2 : int 6 NA NA 6 3 3 4 6 6 7 ... $ B3 : int 7 NA 7 4 3 4 3 7 5 NA ... $ B4 : int 4 5 6 5 4 3 4 5 2 1 ... $ B5 : int 7 NA 7 4 4 3 5 7 5 4 ...
  • Datasetdata.ma05: This is a two-level dataset with students nested within classes. Variables at the student level areDscore,Mscore,denote,manote,miseiandmigrant. Variables at the class level aresprengelandgroesse.'data.frame': 1673 obs. of 10 variables: $ idstud : int 100110001 100110002 100110003 100110004 100110005 ... $ idclass : int 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 ... $ Dscore : int NA 558 643 611 518 552 NA 534 409 543 ... $ Mscore : int 404 563 569 621 653 651 510 NA 517 566 ... $ denote : int NA 1 1 1 3 2 3 2 3 2 ... $ manote : int NA 1 1 1 1 1 2 2 2 1 ... $ misei : int NA 51 NA 38 NA 50 53 53 38 NA ... $ migrant : int NA 0 0 NA 0 0 0 0 0 NA ... $ sprengel: int 0 0 0 0 0 0 0 0 0 0 ... $ groesse : int 25 25 25 25 25 25 25 25 25 25 ...
  • Datasetdata.ma06: This is a dataset in which the variableFCis only available with grouped values (coarse data or interval data).'data.frame': 198 obs. of 7 variables: $ id : num 1001 1002 1003 1004 1005 ... $ A1 : int 14 7 10 15 0 5 9 6 8 0 ... $ A2 : int 5 6 4 8 2 5 4 0 7 0 ... $ Edu : int 4 3 1 5 5 1 NA 1 5 3 ... $ FC : int 3 2 2 2 2 NA NA 2 2 NA ... $ FC_low: num 10 5 5 5 5 0 0 5 5 0 ... $ FC_upp: num 15 10 10 10 10 100 100 10 10 100 ...

Example Index

Dataset data.ma01 mice.1chain (Example 3), mice.impute.weighted.pmm (Example 1), ma.wtd.statNA (Example 1)Dataset data.ma02 fast.groupmean (Example 1),Dataset data.ma03 mice.impute.2l.eap (Example 1)Dataset data.ma04 mice.impute.2l.plausible.values (Example 1)Dataset data.ma05 mice.impute.2l.contextual.pmm (Example 1), mice.impute.2l.latentgroupmean (Example 1)Dataset data.ma06 mice.impute.grouped (Example 1),