#############################################################################
# SIMULATED EXAMPLE 1: 300 cases on 100 variables
#############################################################################
set.seed(789)
N <- 300 # number of cases
p <- 100 # number of predictors
rho1 <- .6 # correlations between predictors
# simulate data
Sigma <- diag(1-rho1,p) + rho1
X <- mvtnorm::rmvnorm( N , sigma=Sigma )
beta <- seq( 0 , 1 , len=p )
y <- ( X %*% beta )[,1] + rnorm( N , sd = .6 )
Y <- matrix(y,nrow=N , ncol=1 )
# PLS regression
res <- kernelpls.fit2( X=X , Y = Y , ncomp=20 )
# predict new scores
Xpred <- predict( res , X = X[1:10,] )
#############################################################################
# EXAMPLE 2: Dataset yarn from pls package
#############################################################################
# use kernelpls.fit from pls package
library(pls)
data(yarn,package="pls")
mod1 <- pls::kernelpls.fit( X = yarn$NIR , Y = yarn$density , ncomp = 10 )
# use kernelpls.fit2 from miceadds package
Y <- matrix( yarn$density, ncol=1 )
mod2 <- kernelpls.fit2( X = yarn$NIR , Y = Y , ncomp = 10 )
Run the code above in your browser using DataLab