#############################################################################
# EXAMPLE 1: Imputation of grouped data
#############################################################################
data(data.ma06)
data <- data.ma06
# define the variable "FC_imp" which should contain the variables to be imputed
data$FC_imp <- NA
V <- ncol(data)
# variables not to be used for imputation
vars_elim <- c("id" , "FC","FC_low","FC_upp")
# define imputation methods
impM <- rep("norm" , V)
names(impM) <- colnames(data)
impM[ vars_elim ] <- ""
impM[ "FC_imp" ] <- "grouped"
# define predictor matrix
predM <- 1 - diag( 0 , V)
rownames(predM) <- colnames(predM) <- colnames(data)
predM[vars_elim, ] <- 0
predM[,vars_elim] <- 0
# define lower and upper boundaries of the grouping intervals
low <- list("FC_imp" = data$FC_low )
upp <- list("FC_imp" = data$FC_upp )
# perform imputation
imp <- mice( data , imputationMethod = impM , predictorMatrix = predM ,
m=1 , maxit=3 , allow.na=TRUE , low=low , upp=upp)
head( complete(imp ))
Run the code above in your browser using DataLab