mice.impute.weighted.pmm(y, ry, x, imputationWeights = NULL,
pls.facs = NULL, interactions = NULL, quadratics = NULL, ...)
n
FALSE
-- missing,
TRUE
-- observed)n
x p
) of complete covariates.NULL
which means that no PLS regression is used for dimension reduction.nmis=sum(!ry)
with imputed values.mice.impute.weighted.norm
.#############################################################################
# EXAMPLE 1: Imputation using sample weights
#############################################################################
data( data.ma01)
set.seed(977)
# select subsample
dat <- as.matrix(data.ma01)
dat <- dat[ 1:1000 , ]
# empty imputation
imp0 <- mice( dat , m=0 , maxit=0)
# redefine imputation methods
meth <- imp0$method
meth[ meth == "pmm" ] <- "weighted.pmm"
meth[ c("paredu" , "books" , "migrant" ) ] <- "weighted.norm"
# redefine predictor matrix
pm <- imp0$predictorMatrix
pm[ , 1:3 ] <- 0
# do imputation
imp <- mice( dat , predictorMatrix=pm , imputationMethod=meth ,
imputationWeights= dat[,"studwgt"] , m=3 , maxit=5)
Run the code above in your browser using DataLab