#############################################################################
# EXAMPLE 1: Nested multiple imputation for TIMSS data
#############################################################################
library(BIFIEsurvey)
data(data.timss2 , package="BIFIEsurvey" )
datlist <- data.timss2
# list of 5 datasets containing 5 plausible values
#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- scan.vec("IDSTUD TOTWGT JKZONE JKREP" )
#- define imputation method
impMethod <- rep("norm" , V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""
#- define predictor matrix
predM <- matrix( 1 , V , V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[ , vars_unused ] <- 0
#***************
# (1) nested multiple imputation using mice
imp1 <- mice.nmi( datlist , imputationMethod=impMethod , predictorMatrix=predM,
m=4 , maxit=3 )
summary(imp1)
#***************
# (2) nested multiple imputation using mice.1chain
imp2 <- mice.nmi( datlist , imputationMethod=impMethod , predictorMatrix=predM ,
Nimp=4 , burnin=10 ,iter =22, type="mice.1chain")
summary(imp2)
Run the code above in your browser using DataLab