Learn R Programming

miceadds (version 1.5-0)

miceadds-package: Some Additional Multiple Imputation Functions, Especially for mice

Description

Contains some auxiliary functions for multiple imputation which complements existing functionality in R. In addition to some utility functions, main features include plausible value imputation, multilevel imputation functions, imputation using partial least squares (PLS) for high dimensional predictors, nested multiple imputation, and two-way imputation.

Arguments

Details

DESCRIPTION miceadds package ll{ Package: miceadds Type: Package Version: 1.5 Publication Year: 2015 License: GPL (>= 2) URL: https://sites.google.com/site/alexanderrobitzsch/software }
  • In addition to the usualmiceimputation function which employs parallel chains, the functionmice.1chaindoes multiple imputation from a single chain.
  • Nested multiple imputation can be conducted withmice.nmi.
  • Imputation based on partial least squares regression is implemented inmice.impute.2l.pls.
  • Unidimensional plausible value imputation for latent variables (or variables with measurement error) in themicesequential imputation framework can be applied by using the methodmice.impute.2l.plausible.values.
  • Imputations for questionnaire items can be accomplished by two-way imputation (tw.imputation).
  • Themiceaddspackage also includes some functionsRutility functions (e.g.write.pspp,ma.scale2).

See Also

See other Rpackages for conducting multiple imputation: mice, Amelia, pan, mi, norm, BaBooN, VIM, ... Some links to internet sites related to missing data: http://missingdata.lshtm.ac.uk/ http://www.stefvanbuuren.nl/mi/ http://www.bristol.ac.uk/cmm/software/realcom/

Examples

Run this code
##   
##   ::'''''''''''''''''''''''''''''''''::
##   :: miceadds 0.11-69 (2013-12-01)   ::
##   ::'''''''''''''''''''''''''''''''''::
##
##  ----------------------- mice at work ---------------------------------
##
##                         (\-.
##                         / _`> .---------.
##                 _)     / _)=  |'-------'|
##                (      / _/    |O   O   o|
##                 `-.__(___)_   | o O . o |
##                               `---------'
##   
##                                          oo__
##                                         <;___)------
##                                    oo__   " "
##                                   <;___)------     oo__
##                                     " "           <;___)------
##                                                     " "

Run the code above in your browser using DataLab