Learn R Programming

miceadds (version 1.5-0)

micombine.chisquare: Combination of Chi Square Statistics of Multiply Imputed Datasets

Description

This function does inference for the $\chi^2$ statistic based on multiply imputed datasets (see e.g. Enders, 2010, p. 239 ff.; Allison, 2002). This function is also denoted as the $D_2$ statistic.

Usage

micombine.chisquare(dk, df, display = TRUE)

Arguments

dk
Vector of chi square statistics
df
Degrees of freedom of $\chi^2$ statistic
display
An optional logical indicating whether results should be printed at the Rconsole.

Value

  • A vector with following entries
  • DCombined $D_2$ statistic which is approximately $F$-distributed with (df, df2) degrees of freedom
  • pThe p value corresponding to D
  • dfDenominator degrees of freedom
  • df2Numerator degrees of freedom
  • chisq.approxChi square approximation of the $D_2$ statistic
  • p.approxThe p value corresponding to the $D_2$ statistic

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage. Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

See Also

See also mice::pool.compare for a Wald test to compare two fitted models in the mice package.

Examples

Run this code
#############################################################################
# EXAMPLE 1: Chi square values of analyses from 7 multiply imputed datasets
#############################################################################

# Vector of 7 chi square statistics
dk <- c(24.957,18.051,18.812,17.362,21.234,18.615,19.84)
dk.comb <- micombine.chisquare(dk=dk, df=4 )
##   Combination of Chi Square Statistics for Multiply Imputed Data
##   Using 7 Imputed Data Sets
##   F(4,594.01)=4.486     p=0.00141 
##   Chi Square Approximation Chi2(4)=17.946     p=0.00126

Run the code above in your browser using DataLab