# NOT RUN {
#############################################################################
# EXAMPLE 1: Weighted statistics for a single dataset data.ma01
#############################################################################
data(data.ma01)
dat <- as.matrix(data.ma01[,-c(1:3)])
# weighted mean
ma.wtd.meanNA( dat , weights=data.ma01$studwgt )
# weighted SD
ma.wtd.sdNA( dat , weights=data.ma01$studwgt )
# weighted covariance for selected variables
ma.wtd.covNA( dat , weights=data.ma01$studwgt , vars = c("books","hisei") )
# weighted correlation
ma.wtd.corNA( dat , weights=data.ma01$studwgt )
# weighted curtosis
ma.wtd.skewnessNA( dat[,"books"] , weights=data.ma01$studwgt )
# compare with result in TAM
TAM::weighted_skewness( x=dat[,"books"] , w=data.ma01$studwgt )
# weighted curtosis
ma.wtd.curtosisNA( dat , weights=data.ma01$studwgt , vars = c("books","hisei") )
# result in TAM
TAM::weighted_curtosis( dat[,"books"] , w=data.ma01$studwgt )
TAM::weighted_curtosis( dat[,"hisei"] , w=data.ma01$studwgt )
# }
# NOT RUN {
#############################################################################
# EXAMPLE 2: Weighted statistics multiply imputed dataset
#############################################################################
library(mitools)
data(data.ma05)
dat <- data.ma05
# do imputations
resp <- dat[ , - c(1:2) ]
# object of class mids
imp <- mice::mice( resp , imputationMethod="norm" , maxit=3 , m=5 )
# object of class datlist
datlist <- miceadds::mids2datlist( imp )
# object of class imputationList
implist <- mitools::imputationList(datlist)
# weighted means
ma.wtd.meanNA(datlist)
ma.wtd.meanNA(implist)
ma.wtd.meanNA(imp)
# weighted quantiles
ma.wtd.quantileNA( implist, weights=data.ma05$studwgt, vars = c("manote","Dscore"))
#############################################################################
# EXAMPLE 3: Weighted statistics nested multiply imputed dataset
#############################################################################
library(BIFIEsurvey)
data(data.timss2 , package="BIFIEsurvey" )
datlist <- data.timss2 # list of 5 datasets containing 5 plausible values
#** define imputation method and predictor matrix
data <- datlist[[1]]
V <- ncol(data)
# variables
vars <- colnames(data)
# variables not used for imputation
vars_unused <- miceadds::scan.vec("IDSTUD TOTWGT JKZONE JKREP" )
#- define imputation method
impMethod <- rep("norm" , V )
names(impMethod) <- vars
impMethod[ vars_unused ] <- ""
#- define predictor matrix
predM <- matrix( 1 , V , V )
colnames(predM) <- rownames(predM) <- vars
diag(predM) <- 0
predM[ , vars_unused ] <- 0
# object of class mids.nmi
imp1 <- miceadds::mice.nmi( datlist , imputationMethod=impMethod , predictorMatrix=predM,
m=4 , maxit=3 )
# object of class nested.datlist
datlist <- miceadds::mids2datlist(imp1)
# object of class NestedImputationList
imp2 <- miceadds::NestedImputationList(datlist)
# weighted correlations
vars <- c("books","ASMMAT","likesc")
ma.wtd.corNA( datlist , vars = vars )
ma.wtd.corNA( imp2 , vars = vars )
ma.wtd.corNA( imp1 , vars = vars )
#############################################################################
# EXAMPLE 4: Multiply imputed datasets in BIFIEdata format
#############################################################################
library(BIFIEsurvey)
data(data.timss1, package="BIFIEsurvey")
data(data.timssrep, package="BIFIEsurvey")
# create BIFIEdata object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1 , wgt= data.timss1[[1]]$TOTWGT ,
wgtrep=data.timssrep[, -1 ] )
summary(bdat)
# create BIFIEdata object in a compact way
bdat2 <- BIFIEsurvey::BIFIE.data( data.list=data.timss1 , wgt= data.timss1[[1]]$TOTWGT ,
wgtrep=data.timssrep[, -1 ] , cdata=TRUE)
summary(bdat2)
# compute skewness
ma.wtd.skewnessNA( bdat , vars = c("ASMMAT" , "books" ) )
ma.wtd.skewnessNA( bdat2 , vars = c("ASMMAT" , "books" ) )
#############################################################################
# EXAMPLE 5: Nested multiply imputed datasets in BIFIEdata format
#############################################################################
data(data.timss4, package="BIFIEsurvey")
data(data.timssrep, package="BIFIEsurvey")
# nested imputed dataset, save it in compact format
bdat <- BIFIE.data( data.list=data.timss4 , wgt= data.timss4[[1]][[1]]$TOTWGT ,
wgtrep=data.timssrep[, -1 ] , NMI=TRUE , cdata=TRUE )
summary(bdat)
# skewness
ma.wtd.skewnessNA( bdat , vars = c("ASMMAT" , "books" ) )
# }
Run the code above in your browser using DataLab