Posterior samples of cluster assignments and Prior parameters
SampleCluster(data, Prior, burn, nsamples, spacing = 1000, block_flag = TRUE)Data frame containing only categorical variables
Specify partition prior: "DP", "PY", "ESCNB"
MCMC burn-in period
MCMC iterations after burn-in
Thinning for chaperones algorithm (default 1000)
TRUE for non-uniform chaperones (default)
List with posterior samples for cluster assignments (Z), Prior parameters and distortion probabilities (Params)