This class is a wrapper for a series of functional analysis on species and communities, including the prokaryotes function identification based on Louca et al. (2016) <doi:10.1126/science.aaf4507> or fungi function identification based on Nguyen et al. (2016) <10.1016/j.funeco.2015.06.006>, functional redundancy calculation and metabolic pathway abundance prediction Abhauer et al. (2015) <10.1093/bioinformatics/btv287>.
func_group_list
store and show the function group list
new()
trans_func$new(dataset = NULL)
dataset
the object of microtable
Class.
for_what : "prok" or "fungi" or NA, "prok" represent prokaryotes. "fungi" represent fungi. NA represent not identified according to the Kingdom information, at this time, if you want to use the functions to identify species traits, you need provide "prok" or "fungi" manually, e.g. dataset$for_what <- "prok".
data(dataset) t1 <- trans_func$new(dataset = dataset)
cal_spe_func()
Confirm traits of each OTU by matching the taxonomic assignments to the functional database; Prokaryotes: based on the FAPROTAX database, please also cite the original FAPROTAX paper: Louca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272. <doi:10.1126/science.aaf4507>; Fungi, based on the FUNGuild database or FungalTraits database, please also cite: FUNGuild: Nguyen et al. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20(1), 241-248, <doi:10.1016/j.funeco.2015.06.006> FungalTraits: Polme et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity 105, 1-16 (2020). <doi:10.1007/s13225-020-00466-2>
trans_func$cal_spe_func(fungi_database = c("FUNGuild", "FungalTraits")[1])
fungi_database
default "FUNGuild"; select a fungi trait database for the trait identification, "FUNGuild" or "FungalTraits"; see the description in this function.
res_spe_func in object.
\donttest{ t1$cal_spe_func() }
cal_spe_func_perc()
Calculating the percentages of species with specific trait in communities or modules. The percentages of the OTUs with specific trait can reflect the potential of the corresponding function in the community or the module in the network.
trans_func$cal_spe_func_perc( use_community = TRUE, abundance_weighted = FALSE, node_type_table = NULL )
use_community
default TRUE; whether calculate community; if FALSE, use module.
abundance_weighted
default FALSE; whether use abundance. If FALSE, calculate the functional population percentage. If TRUE, calculate the functional individual percentage.
node_type_table
default NULL; If use_community FALSE; provide the node_type_table with the module information, such as the result of cal_node_type.
res_spe_func_perc in object.
\donttest{ t1$cal_spe_func_perc(use_community = TRUE) }
show_prok_func()
Show the basic information for a specific function of prokaryotes.
trans_func$show_prok_func(use_func = NULL)
use_func
default NULL; the function name.
None.
\donttest{ t1$show_prok_func(use_func = "methanotrophy") }
plot_spe_func_perc()
Plot the percentages of species with specific trait in communities or modules.
trans_func$plot_spe_func_perc( filter_func = NULL, use_group_list = TRUE, add_facet = TRUE, select_samples = NULL )
filter_func
default NULL; a vector of function names used to show in the plot.
use_group_list
default TRUE; If TRUE, use default group list; If use personalized group list, first set trans_func$func_group_list object with a list of group names and functions.
add_facet
default TRUE; whether use group names as the facets in the plot, see trans_func$func_group_list object.
select_samples
default NULL; character vector, select partial samples to show
ggplot2.
\donttest{ t1$plot_spe_func_perc(use_group_list = TRUE) }
cal_tax4fun()
Predict functional potential of communities using tax4fun. please also cite: Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 31(17), 2882-2884, <doi:10.1093/bioinformatics/btv287>
trans_func$cal_tax4fun(keep_tem = FALSE, folderReferenceData = NULL)
keep_tem
default FALSE; whether keep the intermediate file, that is, the otu table in local place.
folderReferenceData
default NULL; the folder, see http://tax4fun.gobics.de/ and Tax4Fun function in Tax4Fun package.
tax4fun_KO and tax4fun_path in object.
cal_tax4fun2()
Predict functional potential of communities with Tax4Fun2 method. please also cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
trans_func$cal_tax4fun2( blast_tool_path = NULL, path_to_reference_data = "Tax4Fun2_ReferenceData_v2", path_to_temp_folder = NULL, database_mode = "Ref99NR", normalize_by_copy_number = T, min_identity_to_reference = 97, use_uproc = T, num_threads = 1, normalize_pathways = F )
blast_tool_path
default NULL; the folder path, e.g. ncbi-blast-2.11.0+/bin ; blast tools folder downloaded from "ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+" ; e.g. ncbi-blast-2.11.0+-x64-win64.tar.gz for windows system; if blast_tool_path is NULL, search the tools in the environmental path variable.
path_to_reference_data
default "Tax4Fun2_ReferenceData_v2"; the path that points to files used in the prediction; The directory must contain the Ref99NR/Ref100NR folder; download Ref99NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/DkoZIyZpMNbrzSw/download" or Ref100NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/jIByczak9ZAFUB4/download" .
path_to_temp_folder
default NULL; The temporary folder to store the logfile, intermediate file and result files; if NULL, use the default temporary in the computer.
database_mode
default 'Ref99NR'; "Ref99NR" or "Ref100NR" .
normalize_by_copy_number
default TRUE; whether normalize the result by the 16S rRNA copy number in the genomes.
min_identity_to_reference
default 97; the idenity threshold used for finding the nearest species.
use_uproc
default TRUE; UProC was used to functionally anotate the genomes in the reference data.
num_threads
default 1; the threads used in the blastn calculation.
normalize_pathways
default FALSE; Different to Tax4Fun, when converting from KEGG functions to KEGG pathways, Tax4Fun2 does not equally split KO gene abundances between pathways a functions is affiliated to. The full predicted abundance is affiliated to each pathway. Use TRUE to split the abundances (default is FALSE).
res_tax4fun2_KO and res_tax4fun2_pathway in object.
\dontrun{ t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.11.0+/bin", path_to_reference_data = "Tax4Fun2_ReferenceData_v2") }
cal_tax4fun2_FRI()
Calculate (multi-) functional redundancy index (FRI) of prokaryotic community with Tax4Fun2 method. This function is used to calculating aFRI and rFRI use the intermediate files generated by the function cal_tax4fun2(). please also cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
trans_func$cal_tax4fun2_FRI()
res_tax4fun2_aFRI and res_tax4fun2_rFRI in object.
\dontrun{ t1$cal_tax4fun2_FRI() }
print()
Print the trans_func object.
trans_func$print()
clone()
The objects of this class are cloneable with this method.
trans_func$clone(deep = FALSE)
deep
Whether to make a deep clone.
# NOT RUN {
## ------------------------------------------------
## Method `trans_func$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_func$new(dataset = dataset)
## ------------------------------------------------
## Method `trans_func$cal_spe_func`
## ------------------------------------------------
# }
# NOT RUN {
t1$cal_spe_func()
# }
# NOT RUN {
## ------------------------------------------------
## Method `trans_func$cal_spe_func_perc`
## ------------------------------------------------
# }
# NOT RUN {
t1$cal_spe_func_perc(use_community = TRUE)
# }
# NOT RUN {
## ------------------------------------------------
## Method `trans_func$show_prok_func`
## ------------------------------------------------
# }
# NOT RUN {
t1$show_prok_func(use_func = "methanotrophy")
# }
# NOT RUN {
## ------------------------------------------------
## Method `trans_func$plot_spe_func_perc`
## ------------------------------------------------
# }
# NOT RUN {
t1$plot_spe_func_perc(use_group_list = TRUE)
# }
# NOT RUN {
## ------------------------------------------------
## Method `trans_func$cal_tax4fun2`
## ------------------------------------------------
# }
# NOT RUN {
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.11.0+/bin",
path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
# }
# NOT RUN {
## ------------------------------------------------
## Method `trans_func$cal_tax4fun2_FRI`
## ------------------------------------------------
# }
# NOT RUN {
t1$cal_tax4fun2_FRI()
# }
Run the code above in your browser using DataLab