Public methods
Method new()
Usage
trans_nullmodel$new(
dataset = NULL,
filter_thres = 0,
taxa_number = NULL,
group = NULL,
select_group = NULL,
env_cols = NULL,
add_data = NULL,
complete_na = FALSE
)
Arguments
dataset
the object of microtable
Class.
filter_thres
default 0; the relative abundance threshold.
taxa_number
default NULL; how many taxa you want to use, if set, filter_thres parameter invalid.
group
default NULL; which group column name in sample_table is selected.
select_group
default NULL; the group name, used following the group to filter samples.
env_cols
default NULL; number or name vector to select the environmental data in dataset$sample_table.
add_data
default NULL; provide environmental data table additionally.
complete_na
default FALSE; whether fill the NA in environmental data.
Returns
intermediate files in object.
Examples
data(dataset)
data(env_data_16S)
t1 <- trans_nullmodel$new(dataset, taxa_number = 100, add_data = env_data_16S)
Method cal_mantel_corr()
Calculate mantel correlogram.
Usage
trans_nullmodel$cal_mantel_corr(
use_env = NULL,
break.pts = seq(0, 1, 0.02),
cutoff = FALSE,
...
)
Arguments
use_env
default NULL; numeric or character vector to select env_data; if provide multiple variables or NULL, use PCA to reduce dimensionality.
break.pts
default seq(0, 1, 0.02); see mantel.correlog
cutoff
default FALSE; see cutoff in mantel.correlog
...
parameters pass to mantel.correlog
Returns
res_mantel_corr in object.
Examples
\donttest{
t1$cal_mantel_corr(use_env = "pH")
}
Method plot_mantel_corr()
Plot mantel correlogram.
Usage
trans_nullmodel$plot_mantel_corr()
Returns
ggplot.
Examples
\donttest{
t1$plot_mantel_corr()
}
Method cal_betampd()
Calculate betaMPD. Faster than comdist in picante package.
Usage
trans_nullmodel$cal_betampd(abundance.weighted = FALSE)
Arguments
abundance.weighted
default FALSE; whether use weighted abundance
Returns
res_betampd in object.
Examples
\donttest{
t1$cal_betampd(abundance.weighted=FALSE)
}
Method cal_betamntd()
Calculate betaMNTD. Faster than comdistnt in picante package.
Usage
trans_nullmodel$cal_betamntd(
abundance.weighted = FALSE,
exclude.conspecifics = FALSE
)
Arguments
abundance.weighted
default FALSE; whether use weighted abundance
exclude.conspecifics
default FALSE; see comdistnt in picante package.
Returns
res_betamntd in object.
Examples
\donttest{
t1$cal_betamntd(abundance.weighted=FALSE)
}
Method cal_ses_betampd()
Calculate ses.betaMPD (betaNRI).
Usage
trans_nullmodel$cal_ses_betampd(
runs = 1000,
abundance.weighted = FALSE,
verbose = TRUE
)
Arguments
runs
default 1000; simulation runs.
abundance.weighted
default FALSE; whether use weighted abundance.
verbose
default TRUE; whether show the calculation process message.
Returns
res_ses_betampd in object.
Examples
\donttest{
t1$cal_ses_betampd(runs = 100, abundance.weighted = FALSE)
}
Method cal_ses_betamntd()
Calculate ses.betaMNTD (betaNTI).
Usage
trans_nullmodel$cal_ses_betamntd(
runs = 1000,
abundance.weighted = FALSE,
exclude.conspecifics = FALSE,
verbose = TRUE
)
Arguments
runs
default 1000; simulation runs.
abundance.weighted
default FALSE; whether use weighted abundance
exclude.conspecifics
default FALSE; see comdistnt in picante package.
verbose
default TRUE; whether show the calculation process message.
Returns
res_ses_betamntd in object.
Examples
\donttest{
t1$cal_ses_betamntd(runs = 100, abundance.weighted = FALSE, exclude.conspecifics = FALSE)
}
Method cal_rcbray()
Calculate rcbray.
Usage
trans_nullmodel$cal_rcbray(
runs = 1000,
verbose = TRUE,
null.model = "independentswap"
)
Arguments
runs
default 1000; simulation runs.
verbose
default TRUE; whether show the calculation process message.
null.model
default "independentswap"; see more available options in randomizeMatrix function of picante package.
Returns
res_rcbray in object.
Examples
\donttest{
t1$cal_rcbray(runs=200)
}
Method cal_process()
Infer the processes according to ses.betaMNTD ses.betaMPD and rcbray.
Usage
trans_nullmodel$cal_process(use_betamntd = TRUE)
Arguments
use_betamntd
default TRUE; whether use ses.betaMNTD; if false, use ses.betaMPD.
Returns
res_rcbray in object.
Examples
\donttest{
t1$cal_process(use_betamntd = TRUE)
}
Method cal_Cscore()
Calculates the (normalised) mean number of checkerboard combinations (C-score) using C.score function in bipartite package.
Usage
trans_nullmodel$cal_Cscore(by_group = NULL, ...)
Arguments
by_group
default NULL; one column name or number in sample_table; calculate C-score for different groups separately.
...
paremeters pass to C.score function in bipartite package.
Returns
results directly.
Examples
\donttest{
t1$cal_Cscore()
}
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_nullmodel$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.