Public methods
Method new()
Usage
trans_beta$new(dataset = NULL, measure = NULL, group = NULL)
Arguments
dataset
the object of microtable
Class.
measure
default NULL; bray, jaccard, wei_unifrac or unwei_unifrac, or other name of matrix you add;
beta diversity index used for ordination, manova or group distance.
group
default NULL; sample group used for manova, betadisper or group distance.
Returns
parameters stored in the object.
Examples
data(dataset)
t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")
Method cal_ordination()
Ordination based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>.
Usage
trans_beta$cal_ordination(
ordination = "PCoA",
ncomp = 3,
trans_otu = FALSE,
scale_species = FALSE
)
Arguments
ordination
default "PCoA"; "PCA", "PCoA" or "NMDS".
ncomp
default 3; the returned dimensions.
trans_otu
default FALSE; whether species abundance will be square transformed, used for PCA.
scale_species
default FALSE; whether species loading in PCA will be scaled.
Returns
res_ordination stored in the object.
Examples
t1$cal_ordination(ordination = "PCoA")
Method plot_ordination()
Plotting the ordination result based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>.
Usage
trans_beta$plot_ordination(
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
plot_color = NULL,
plot_shape = NULL,
plot_group_order = NULL,
plot_point_size = 3,
plot_point_alpha = 0.9,
plot_sample_label = NULL,
plot_group_centroid = FALSE,
plot_group = NULL,
segment_alpha = 0.6,
centroid_linetype = 3,
plot_group_ellipse = FALSE,
ellipse_level = 0.9,
ellipse_alpha = 0.1,
ellipse_type = "t"
)
Arguments
color_values
default RColorBrewer::brewer.pal(8, "Dark2"); colors for presentation.
shape_values
default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector used in the shape type, see ggplot2 tutorial.
plot_color
default NULL; the sample group name used for color in plot.
plot_shape
default NULL; the sample group name used for shape in plot.
plot_group_order
default NULL; a vector used to order the groups in the legend of plot.
plot_point_size
default 3; point size in plot.
plot_point_alpha
default .9; point transparency in plot.
plot_sample_label
default NULL; the column name in sample table, if provided, show the point name in plot.
plot_group_centroid
default FALSE; whether show the centroid in each group of plot.
plot_group
default NULL; the column name in sample table, generally used with plot_group_centroid and plot_group_ellipse.
segment_alpha
default .6; segment transparency in plot.
centroid_linetype
default 3; the line type related with centroid in plot.
plot_group_ellipse
default FALSE; whether show the confidence ellipse in each group of plot.
ellipse_level
default .9; confidence level of ellipse.
ellipse_alpha
default .1; color transparency in the ellipse.
ellipse_type
default t; see type in stat_ellipse
.
Returns
ggplot.
Examples
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_group_ellipse = TRUE)
Method cal_manova()
Calculate perMANOVA based on Anderson al. (2008) <doi:10.1111/j.1442-9993.2001.01070.pp.x> and R vegan adonis function.
Usage
trans_beta$cal_manova(
cal_manova_all = FALSE,
cal_manova_paired = FALSE,
cal_manova_set = NULL,
permutations = 999
)
Arguments
cal_manova_all
default FALSE; whether manova is used for all data.
cal_manova_paired
default FALSE; whether manova is used for all the paired groups.
cal_manova_set
default NULL; specified group set for manova, see adonis
.
permutations
default 999; see permutations in adonis
.
Returns
res_manova stored in object.
Examples
t1$cal_manova(cal_manova_all = TRUE)
Method cal_betadisper()
A wrapper for betadisper function in vegan package for multivariate homogeneity test of groups dispersions.
Usage
trans_beta$cal_betadisper(...)
Arguments
...
parameters passed to betadisper
function.
Returns
res_betadisper stored in object.
Examples
t1$cal_betadisper()
Method cal_group_distance()
Transform sample distances within groups or between groups.
Usage
trans_beta$cal_group_distance(within_group = TRUE)
Arguments
within_group
default TRUE; whether transform sample distance within groups, if FALSE, transform sample distance between any two groups.
Returns
res_group_distance stored in object.
Examples
\donttest{
t1$cal_group_distance(within_group = TRUE)
}
Method plot_group_distance()
Plotting the distance between samples within or between groups.
Usage
trans_beta$plot_group_distance(
plot_group_order = NULL,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
distance_pair_stat = FALSE,
hide_ns = FALSE,
hide_ns_more = NULL,
pair_compare_filter_match = NULL,
pair_compare_filter_select = NULL,
pair_compare_method = "wilcox.test",
plot_distance_xtype = NULL
)
Arguments
plot_group_order
default NULL; a vector used to order the groups in the plot.
color_values
colors for presentation.
distance_pair_stat
default FALSE; whether do the paired comparisions.
hide_ns
default FALSE; whether hide the "ns" pairs, i.e. non significant comparisions.
hide_ns_more
default NULL; character vector; available when hide_ns = TRUE; if provided, used for the specific significance filtering, such as c("ns", "*").
pair_compare_filter_match
default NULL; only available when hide_ns = FALSE; if provided, remove the matched groups; use the regular express to match the paired groups.
pair_compare_filter_select
default NULL; numeric vector;only available when hide_ns = FALSE; if provided, only select those input groups.
This parameter must be a numeric vector used to select the paired combination of groups. For example, pair_compare_filter_select = c(1, 3)
can be used to select "CW"-"IW" and "IW"-"TW" from all the three pairs "CW"-"IW", "CW"-"TW" and "IW"-"TW" of ordered groups ("CW", "IW", "TW").
The parameter pair_compare_filter_select and pair_compare_filter_match can not be both used together.
pair_compare_method
default wilcox.test; wilcox.test, kruskal.test, t.test or anova.
plot_distance_xtype
default NULL; number used to make x axis text generate angle.
Returns
ggplot.
Examples
\donttest{
t1$plot_group_distance(distance_pair_stat = TRUE)
t1$plot_group_distance(distance_pair_stat = TRUE, hide_ns = TRUE)
t1$plot_group_distance(distance_pair_stat = TRUE, hide_ns = TRUE, hide_ns_more = c("ns", "*"))
t1$plot_group_distance(distance_pair_stat = TRUE, pair_compare_filter_select = 3)
}
Method plot_clustering()
Plotting clustering result. Require ggdendro package.
Usage
trans_beta$plot_clustering(
use_colors = RColorBrewer::brewer.pal(8, "Dark2"),
measure = NULL,
group = NULL,
replace_name = NULL
)
Arguments
use_colors
colors for presentation.
measure
default NULL; beta diversity index; If NULL, using the measure when creating object
group
default NULL; if provided, use this group to assign color.
replace_name
default NULL; if provided, use this as label.
Returns
ggplot.
Examples
t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))
Method print()
Print the trans_beta object.
Usage
trans_beta$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_beta$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.