Public methods
Method new()
Create the trans_func object. This function can identify the data type for Prokaryotes or Fungi automatically.
Usage
trans_func$new(dataset = NULL)
Arguments
dataset
the object of microtable
Class.
Returns
for_what : "prok" or "fungi" or NA, "prok" represent prokaryotes. "fungi" represent fungi. NA stand for not identified according to the Kingdom information,
at this time, if you want to use the functions to identify species traits, you need provide "prok" or "fungi" manually, e.g. dataset$for_what <- "prok".
Examples
data(dataset)
t1 <- trans_func$new(dataset = dataset)
Method cal_spe_func()
Confirm traits of each OTU by matching the taxonomic assignments to the functional database;
Prokaryotes, based on the FAPROTAX database or NJC19 database, please also cite:
FAPROTAX: Louca et al. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272. <doi:10.1126/science.aaf4507>;
NJC19: Lim et al. (2020). Large-scale metabolic interaction network<U+00A0>of the mouse and human gut microbiota. Scientific Data, 7(1). <10.1038/s41597-020-0516-5>.
Fungi, based on the FUNGuild database or FungalTraits database, please also cite:
FUNGuild: Nguyen et al. (2016).
FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20(1), 241-248, <doi:10.1016/j.funeco.2015.06.006>;
FungalTraits: Polme et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles.
Fungal Diversity 105, 1-16 (2020). <doi:10.1007/s13225-020-00466-2>
Usage
trans_func$cal_spe_func(
prok_database = c("FAPROTAX", "NJC19")[1],
fungi_database = c("FUNGuild", "FungalTraits")[1]
)
Arguments
prok_database
default "FAPROTAX"; "FAPROTAX" or "NJC19", selecting a prokaryotic trait database; see the description in this function.
fungi_database
default "FUNGuild"; "FUNGuild" or "FungalTraits", a fungi trait database for the identification; see the description in this function.
Returns
res_spe_func in object.
Examples
\donttest{
t1$cal_spe_func()
}
Method cal_spe_func_perc()
Calculating the percentages of species with specific trait in communities or modules.
The percentages of the OTUs with specific trait can reflect the potential of the corresponding function in the community or the module in the network.
Usage
trans_func$cal_spe_func_perc(
use_community = TRUE,
abundance_weighted = FALSE,
node_type_table = NULL
)
Arguments
use_community
default TRUE; whether calculate community; if FALSE, use module.
abundance_weighted
default FALSE; whether use abundance. If FALSE, calculate the functional population percentage. If TRUE,
calculate the functional individual percentage.
node_type_table
default NULL; If use_community FALSE; provide the node_type_table with the module information, such as the result of cal_node_type.
Returns
res_spe_func_perc in object.
Examples
\donttest{
t1$cal_spe_func_perc(use_community = TRUE)
}
Method show_prok_func()
Show the annotation information for a function of prokaryotes from FAPROTAX database.
Usage
trans_func$show_prok_func(use_func = NULL)
Arguments
use_func
default NULL; the function name.
Returns
None.
Examples
\donttest{
t1$show_prok_func(use_func = "methanotrophy")
}
Method plot_spe_func_perc()
Plot the percentages of species with specific trait in communities or modules.
Usage
trans_func$plot_spe_func_perc(
filter_func = NULL,
use_group_list = TRUE,
add_facet = TRUE,
select_samples = NULL
)
Arguments
filter_func
default NULL; a vector of function names used to show in the plot.
use_group_list
default TRUE; If TRUE, use default group list; If use personalized group list,
first set trans_func$func_group_list object with a list of group names and functions.
add_facet
default TRUE; whether use group names as the facets in the plot, see trans_func$func_group_list object.
select_samples
default NULL; character vector, select partial samples to show
Returns
ggplot2.
Examples
\donttest{
t1$plot_spe_func_perc(use_group_list = TRUE)
}
Method cal_tax4fun()
Predict functional potential of communities using tax4fun.
please cite: Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 31(17), 2882-2884, <doi:10.1093/bioinformatics/btv287>.
Note that this function requires a standard prefix in taxonomic table with double underlines (e.g. g__) .
Usage
trans_func$cal_tax4fun(keep_tem = FALSE, folderReferenceData = NULL)
Arguments
keep_tem
default FALSE; whether keep the intermediate file, that is, the otu table in local place.
folderReferenceData
default NULL; the folder, see http://tax4fun.gobics.de/ and Tax4Fun function in Tax4Fun package.
Returns
tax4fun_KO and tax4fun_path in object.
Method cal_tax4fun2()
Predict functional potential of communities with Tax4Fun2 method.
pleas cite:
Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020).
<doi:10.1186/s40793-020-00358-7>
Usage
trans_func$cal_tax4fun2(
blast_tool_path = NULL,
path_to_reference_data = "Tax4Fun2_ReferenceData_v2",
path_to_temp_folder = NULL,
database_mode = "Ref99NR",
normalize_by_copy_number = T,
min_identity_to_reference = 97,
use_uproc = T,
num_threads = 1,
normalize_pathways = F
)
Arguments
blast_tool_path
default NULL; the folder path, e.g. ncbi-blast-2.5.0+/bin ; blast tools folder downloaded from
"ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+" ; e.g. ncbi-blast-2.5.0+-x64-win64.tar.gz for windows system;
if blast_tool_path is NULL, search the tools in the environmental path variable.
path_to_reference_data
default "Tax4Fun2_ReferenceData_v2"; the path that points to files used in the prediction;
The directory must contain the Ref99NR/Ref100NR folder;
download Ref99NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/DkoZIyZpMNbrzSw/download" or
Ref100NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/jIByczak9ZAFUB4/download" .
path_to_temp_folder
default NULL; The temporary folder to store the logfile, intermediate file and result files; if NULL,
use the default temporary in the computer.
database_mode
default 'Ref99NR'; "Ref99NR" or "Ref100NR" .
normalize_by_copy_number
default TRUE; whether normalize the result by the 16S rRNA copy number in the genomes.
min_identity_to_reference
default 97; the idenity threshold used for finding the nearest species.
use_uproc
default TRUE; UProC was used to functionally anotate the genomes in the reference data.
num_threads
default 1; the threads used in the blastn calculation.
normalize_pathways
default FALSE; Different to Tax4Fun, when converting from KEGG functions to KEGG pathways,
Tax4Fun2 does not equally split KO gene abundances between pathways a functions is affiliated to. The full predicted abundance is affiliated to each pathway.
Use TRUE to split the abundances (default is FALSE).
Returns
res_tax4fun2_KO and res_tax4fun2_pathway in object.
Examples
\dontrun{
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin",
path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
}
Method cal_tax4fun2_FRI()
Calculate (multi-) functional redundancy index (FRI) of prokaryotic community with Tax4Fun2 method.
This function is used to calculating aFRI and rFRI use the intermediate files generated by the function cal_tax4fun2().
please also cite:
Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences.
Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
Usage
trans_func$cal_tax4fun2_FRI()
Returns
res_tax4fun2_aFRI and res_tax4fun2_rFRI in object.
Examples
\dontrun{
t1$cal_tax4fun2_FRI()
}
Method print()
Print the trans_func object.
Usage
trans_func$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_func$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.