Learn R Programming

⚠️There's a newer version (0.9) of this package.Take me there.

midasr (version 0.3)

Mixed Data Sampling Regression

Description

Econometric methods for mixed frequency time series data analysis

Copy Link

Version

Install

install.packages('midasr')

Monthly Downloads

1,237

Version

0.3

License

GPL-2 | MIT + file LICENCE

Maintainer

Vaidotas Zemlys

Last Published

April 30th, 2014

Functions in midasr (0.3)

USpayems

United States total employment non-farms payroll, monthly, seasonally adjusted.
USunempr

US monthly unemployment rate
deriv_tests

Check whether non-linear least squares restricted MIDAS regression problem has converged
amidas_table

Weight and lag selection table for aggregates based MIDAS regression model
almonp

Almon polynomial MIDAS weights specification
gompertzp.gradient

Gradient function for normalized Gompertz probability density function MIDAS weights specification Calculate gradient function for normalized Gompertz probability density function specification of MIDAS weights.
checkARstar

Check whether the MIDAS model is MIDAS-AR* model
USrealgdp

US annual gross domestic product in billions of chained 2005 dollars
deviance.midas_r

MIDAS regression model deviance
midas.auto.sim

Simulate autoregressive MIDAS model
prep_hAh

average_forecast

Average forecasts of MIDAS models
+.lws_table

Combine lws_table objects
imidas_r.imidas_r

Restricted MIDAS regression with I(1) regressors
weight_coef

Return the restricted coefficients generated by restriction function(s)
midas_r.midas_r

Restricted MIDAS regression
polystep.gradient

Gradient of step function specification for MIDAS weights
amweights

Weights for aggregates based MIDAS regressions
AICc

Compute AICc
imidas_r

Restricted MIDAS regression with I(1) regressors
split_data

Split mixed frequency data into in-sample and out-of-sample
weight_names

Return the names of restriction function(s)
midas_coef

Return the coefficients of MIDAS regression
almonp.gradient

Gradient function for Almon polynomial MIDAS weights
predict.midas_r

Predict method for MIDAS regression fit
hAhr.test

Test restrictions on coefficients of MIDAS regression using robust version of the test
nakagamip.gradient

Gradient function for normalized Nakagami probability density function MIDAS weights specification Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights.
midas.sim

Simulate MIDAS regression response variable
nbetaMT.gradient

Gradient function for normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
midas_u

Estimate unrestricted MIDAS regression
select_and_forecast

Create table for different forecast horizons
agk.test

Andreou, Ghysels, Kourtellos LM test
polystep

Step function specification for MIDAS weights
expand_amidas

Create table of weights, lags and starting values for Ghysels weight schema
dmls

MIDAS lag structure for unit root processes
hAh.test

Test restrictions on coefficients of MIDAS regression
nbetaMT

Normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox.
gompertzp

Normalized Gompertz probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Gompertz probability density function specification
nealmon.gradient

Gradient function for normalized exponential Almon lag weights
harstep.gradient

Gradient function for HAR(3)-RV model MIDAS weights specification
USqgdp

United States gross domestic product, quarterly, seasonaly adjusted annual rate.
modsel

Select the model based on given information criteria
fmls

Full MIDAS lag structure
expand_weights_lags

Create table of weights, lags and starting values
mls

MIDAS lag structure
harstep

HAR(3)-RV model MIDAS weights specification
midas_r_simple

Restricted MIDAS regression
check_mixfreq

Check data for MIDAS regression
get_estimation_sample

Get the data which was used to etimate MIDAS regression
lcauchyp

Normalized log-Cauchy probability density function MIDAS weights specification Calculate MIDAS weights according to normalized log-Cauchy probability density function specification
midas_r.fit

Fit restricted MIDAS regression
midas_r

Restricted MIDAS regression
lcauchyp.gradient

Gradient function for normalized log-Cauchy probability density function MIDAS weights specification Calculate gradient function for normalized log-Cauchy probability density function specification of MIDAS weights.
midas_r_np

Estimate non-parametric MIDAS regression
nbeta.gradient

Gradient function for normalized beta probability density function MIDAS weights specification Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
forecast

Forecast MIDAS regression
mls_coef

Return the coefficients for fmls variables
nbeta

Normalized beta probability density function MIDAS weights specification Calculate MIDAS weights according to normalized beta probability density function specification
oos_prec

Out-of-sample prediction precision data on simulation example
weights_table

Create a weight function selection table for MIDAS regression model
hf_lags_table

Create a high frequency lag selection table for MIDAS regression model
midasr-package

Estimating and testing MIDAS regression
simplearma.sim

Simulate AR(1) or MA(1) model
lf_lags_table

Create a low frequency lag selection table for MIDAS regression model
nakagamip

Normalized Nakagami probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Nakagami probability density function specification
rvsp500

Realized volatility of S&P500 index
weight_param

Return the estimated hyper parameters of the weight function(s)
midas_r_ic_table

Create a weight and lag selection table for MIDAS regression model
nealmon

Normalized Exponential Almon lag MIDAS coefficients
prepmidas_r

Prepare necessary objects for fitting of the MIDAS regression