Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (0.9) of this package.
Take me there.
midasr (version 0.3)
Mixed Data Sampling Regression
Description
Econometric methods for mixed frequency time series data analysis
Copy Link
Link to current version
Version
Version
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Install
install.packages('midasr')
Monthly Downloads
1,237
Version
0.3
License
GPL-2 | MIT + file LICENCE
Maintainer
Vaidotas Zemlys
Last Published
April 30th, 2014
Functions in midasr (0.3)
Search all functions
USpayems
United States total employment non-farms payroll, monthly, seasonally adjusted.
USunempr
US monthly unemployment rate
deriv_tests
Check whether non-linear least squares restricted MIDAS regression problem has converged
amidas_table
Weight and lag selection table for aggregates based MIDAS regression model
almonp
Almon polynomial MIDAS weights specification
gompertzp.gradient
Gradient function for normalized Gompertz probability density function MIDAS weights specification Calculate gradient function for normalized Gompertz probability density function specification of MIDAS weights.
checkARstar
Check whether the MIDAS model is MIDAS-AR* model
USrealgdp
US annual gross domestic product in billions of chained 2005 dollars
deviance.midas_r
MIDAS regression model deviance
midas.auto.sim
Simulate autoregressive MIDAS model
prep_hAh
Calculate data for
hAh.test
and
hAhr.test
average_forecast
Average forecasts of MIDAS models
+.lws_table
Combine
lws_table
objects
imidas_r.imidas_r
Restricted MIDAS regression with I(1) regressors
weight_coef
Return the restricted coefficients generated by restriction function(s)
midas_r.midas_r
Restricted MIDAS regression
polystep.gradient
Gradient of step function specification for MIDAS weights
amweights
Weights for aggregates based MIDAS regressions
AICc
Compute AICc
imidas_r
Restricted MIDAS regression with I(1) regressors
split_data
Split mixed frequency data into in-sample and out-of-sample
weight_names
Return the names of restriction function(s)
midas_coef
Return the coefficients of MIDAS regression
almonp.gradient
Gradient function for Almon polynomial MIDAS weights
predict.midas_r
Predict method for MIDAS regression fit
hAhr.test
Test restrictions on coefficients of MIDAS regression using robust version of the test
nakagamip.gradient
Gradient function for normalized Nakagami probability density function MIDAS weights specification Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights.
midas.sim
Simulate MIDAS regression response variable
nbetaMT.gradient
Gradient function for normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
midas_u
Estimate unrestricted MIDAS regression
select_and_forecast
Create table for different forecast horizons
agk.test
Andreou, Ghysels, Kourtellos LM test
polystep
Step function specification for MIDAS weights
expand_amidas
Create table of weights, lags and starting values for Ghysels weight schema
dmls
MIDAS lag structure for unit root processes
hAh.test
Test restrictions on coefficients of MIDAS regression
nbetaMT
Normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox.
gompertzp
Normalized Gompertz probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Gompertz probability density function specification
nealmon.gradient
Gradient function for normalized exponential Almon lag weights
harstep.gradient
Gradient function for HAR(3)-RV model MIDAS weights specification
USqgdp
United States gross domestic product, quarterly, seasonaly adjusted annual rate.
modsel
Select the model based on given information criteria
fmls
Full MIDAS lag structure
expand_weights_lags
Create table of weights, lags and starting values
mls
MIDAS lag structure
harstep
HAR(3)-RV model MIDAS weights specification
midas_r_simple
Restricted MIDAS regression
check_mixfreq
Check data for MIDAS regression
get_estimation_sample
Get the data which was used to etimate MIDAS regression
lcauchyp
Normalized log-Cauchy probability density function MIDAS weights specification Calculate MIDAS weights according to normalized log-Cauchy probability density function specification
midas_r.fit
Fit restricted MIDAS regression
midas_r
Restricted MIDAS regression
lcauchyp.gradient
Gradient function for normalized log-Cauchy probability density function MIDAS weights specification Calculate gradient function for normalized log-Cauchy probability density function specification of MIDAS weights.
midas_r_np
Estimate non-parametric MIDAS regression
nbeta.gradient
Gradient function for normalized beta probability density function MIDAS weights specification Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
forecast
Forecast MIDAS regression
mls_coef
Return the coefficients for fmls variables
nbeta
Normalized beta probability density function MIDAS weights specification Calculate MIDAS weights according to normalized beta probability density function specification
oos_prec
Out-of-sample prediction precision data on simulation example
weights_table
Create a weight function selection table for MIDAS regression model
hf_lags_table
Create a high frequency lag selection table for MIDAS regression model
midasr-package
Estimating and testing MIDAS regression
simplearma.sim
Simulate AR(1) or MA(1) model
lf_lags_table
Create a low frequency lag selection table for MIDAS regression model
nakagamip
Normalized Nakagami probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Nakagami probability density function specification
rvsp500
Realized volatility of S&P500 index
weight_param
Return the estimated hyper parameters of the weight function(s)
midas_r_ic_table
Create a weight and lag selection table for MIDAS regression model
nealmon
Normalized Exponential Almon lag MIDAS coefficients
prepmidas_r
Prepare necessary objects for fitting of the MIDAS regression