Learn R Programming

midasr (version 0.5)

midas_auto_sim: Simulate simple autoregressive MIDAS model

Description

Given the predictor variable, the weights and autoregressive coefficients, simulate MIDAS regression response variable.

Usage

midas_auto_sim(n, alpha, x, theta, rand_gen = rnorm, innov = rand_gen(n, ...), n_start = NA, ...)

Arguments

n
sample size.
alpha
autoregressive coefficients.
x
a high frequency predictor variable.
theta
a vector with MIDAS weights for predictor variable.
rand_gen
a function to generate the innovations, default is the normal distribution.
innov
an optional time series of innovations.
n_start
number of observations to omit for the burn.in.
...
additional arguments to function rand_gen.

Value

a ts object

Examples

Run this code
theta_h0 <- function(p, dk) {
  i <- (1:dk-1)/100
  pol <- p[3]*i + p[4]*i^2
  (p[1] + p[2]*i)*exp(pol)
}

##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)

##Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 1000 * 12), frequency = 12)

y <- midas_auto_sim(500, 0.5, xx, theta0, n_start = 200)
x <- window(xx, start=start(y))
midas_r(y ~ mls(y, 1, 1) + fmls(x, 4*12-1, 12, theta_h0), start = list(x = c(-0.1, 10, -10, -10)))

Run the code above in your browser using DataLab