set.seed(1)
# dataset:
# - x1 is mutated around +- 10
# - x2 influences sdev of mutation of x1
ds = data.frame(x1 = 0, x2 = c(.01, 0.1, 1))
p = ps(x1 = p_dbl(-10, 10), x2 = p_dbl(0, 10))
# operator that only mutates x1, with sdev given by x2
gauss_x1 = mut("combine",
operators = list(
x1 = mut("gauss", sdev_is_relative = FALSE),
x2 = mut("null")
),
adaptions = list(x1.sdev = function(x) x$x2)
)
gauss_x1$prime(p)
gauss_x1$operate(ds) # see how x1[1] changes little, x1[3] changes a lot
# operator that mutates x1 with sdev given by x2, as well as x2. However,
# the value that x2 takes after mutation does not influence the value that
# the mutator of x1 "sees" -- although x2 is mutated to extreme values,
# mutation of x1 happens as in `gauss_x1`.
gauss_x1_x2 = mut("combine",
operators = list(
x1 = mut("gauss", sdev_is_relative = FALSE),
x2 = mut("gauss", sdev = 100)
),
adaptions = list(x1.sdev = function(x) x$x2)
)
gauss_x1_x2$prime(p)
gauss_x1_x2$operate(ds) # see how x1 changes in similar ways to above
# operator that mutates sequentially: first x2, and then x1 with sdev given
# by x2. The value that x2 takes after mutation *does* influence the value
# that the mutator of x1 "sees": x1 is mutated either to a large degree,
# or not at all.
gauss_x2_then_x1 = mut("sequential", list(
mut("combine",
operators = list(
x1 = mut("null"),
x2 = mut("gauss", sdev = 100)
)
),
mut("combine",
operators = list(
x1 = mut("gauss", sdev_is_relative = FALSE),
x2 = mut("null")
),
adaptions = list(x1.sdev = function(x) x$x2)
)
))
gauss_x2_then_x1$prime(p)
gauss_x2_then_x1$operate(ds)
Run the code above in your browser using DataLab