library("bbotk")
lgr::threshold("warn")
objective <- ObjectiveRFun$new(
fun = function(xs) {
list(y1 = xs$x1, y2 = xs$x2)
},
domain = ps(x1 = p_dbl(0, 1), x2 = p_dbl(-1, 0)),
codomain = ps(y1 = p_dbl(0, 1, tags = "maximize"),
y2 = p_dbl(-1, 0, tags = "minimize"))
)
oi <- OptimInstanceMultiCrit$new(objective, terminator = trm("none"))
try(mies_aggregate_single_generation(oi$archive, identity), silent = TRUE)
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses)
mies_init_population(oi, 2, budget_id = "x1", fidelity = .5)
oi$archive$data
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses)
# Notice how fitnesses are positive, since x2 is scaled with -1.
# To get the original objective-values, use objectives_unscaled:
mies_aggregate_single_generation(oi$archive,
function(objectives_unscaled) objectives_unscaled)
# When `...` is used, all information is passed:
mies_aggregate_single_generation(oi$archive, function(...) names(list(...)))
# Generation 10 is not present, but individuals with eol `NA` are still
# considered alive:
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,
generation = 10)
# Re-evaluating points with higher "fidelity" (x1)
mies_step_fidelity(oi, budget_id = "x1", fidelity = 0.7)
oi$archive$data
# Lower-fidelity values are considered dead now, even for generation 1:
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,
generation = 1)
# This adds two new alive individuals at generation 2.
# Also the individuals from gen 1 are reevaluated with fidelity 0.8
mies_evaluate_offspring(oi, offspring = data.frame(x2 = c(-0.1, -0.2)),
budget_id = "x1", fidelity = 0.9, reevaluate_fidelity = 0.8)
oi$archive$data
mies_aggregate_single_generation(oi$archive, function(budget, ...) budget)
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,
generation = 1)
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,
generation = 2)
# No individuals were killed, but some were fidelity-reevaluated.
# These are not present with include_previous_generations:
mies_aggregate_single_generation(oi$archive, function(fitnesses) fitnesses,
generation = 2, include_previous_generations = TRUE)
# Typical use-case: get dominated hypervolume
mies_aggregate_single_generation(oi$archive, function(fitnesses) domhv(fitnesses))
# Get generation-wise mean fitness values
mies_aggregate_single_generation(oi$archive, function(fitnesses) {
apply(fitnesses, 2, mean)
})
Run the code above in your browser using DataLab