set.seed(1)
library("bbotk")
lgr::threshold("warn")
# Define the objective to optimize
objective <- ObjectiveRFun$new(
fun = function(xs) {
z <- exp(-xs$x^2 - xs$y^2) + 2 * exp(-(2 - xs$x)^2 - (2 - xs$y)^2)
list(Obj = z)
},
domain = ps(x = p_dbl(-2, 4), y = p_dbl(-2, 4)),
codomain = ps(Obj = p_dbl(tags = "maximize"))
)
# Get a new OptimInstance
oi <- OptimInstanceSingleCrit$new(objective,
terminator = trm("evals", n_evals = 100)
)
mies_init_population(inst = oi, mu = 3)
offspring = generate_design_random(oi$search_space, 2)$data
mies_evaluate_offspring(oi, offspring = offspring)
# State before: different generations of individuals. Alive individuals have
# 'eol' set to 'NA'.
oi$archive
s = sel("best")
s$prime(oi$search_space)
mies_survival_plus(oi, mu = 3, survival_selector = s)
# sel("best") lets only the three best individuals survive.
# The others have 'eol = 2' (the current generation).
oi$archive
Run the code above in your browser using DataLab