Multivariate inverse Gaussian
This R package consists of utilities for multivariate inverse Gaussian (MIG) models with mean $\boldsymbol{\xi}$ and scale matrix $\boldsymbol{\Omega}$ defined over the halfspace ${\boldsymbol{x} \in \mathbb{R}^d: \boldsymbol{\beta}^\top\boldsymbol{x} > 0}$, including density evaluation and random number generation and kernel smoothing.
Distributions
migfor the MIG distribution(rmigfor random number generation anddmigfor density)tellipt(rtelliptfor random vector generation anddtelliptthe density) for truncated Student-$t$ or Gaussian distribution over the half space ${\boldsymbol{x}: \boldsymbol{\beta}^\top\boldsymbol{x}>\delta}$ for $\delta \geq 0$.fit_migto estimate the parameters of the MIG distribution via maximum likelihood (mle) or the method of moments (mom).
Kernel density estimation
mig_kdens_bandwidthto estimate the bandwidth matrix minimizing the asymptotic mean integrated squared error (AMISE) or the leave-one-out likelihood cross validation, minimizing the Kullback--Leibler divergence. Theamiseestimators are estimated by drawing from amigor truncated Gaussian vector via Monte Carlonormalrule_bandwidthfor the normal rule of Scott for the Gaussian kernelmig_kdensfor the kernel density estimatortellipt_kdensfor the truncated Gaussian kernel density estimator