# NOT RUN {
library(miic)
# EXAMPLE HEMATOPOIESIS
data(hematoData)
# execute MIIC (reconstruct graph)
miic.res = miic(inputData = hematoData, latent = TRUE,
confidenceShuffle = 10, confidenceThreshold = 0.001)
# plot graph
miic.plot(miic.res)
# }
# NOT RUN {
# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).
miic.write.network.cytoscape(g = miic.res, file.path(tempdir(),"/temp"))
# EXAMPLE CANCER
data(cosmicCancer)
data(cosmicCancer_stateOrder)
# execute MIIC (reconstruct graph)
miic.res = miic(inputData = cosmicCancer, categoryOrder = cosmicCancer_stateOrder, latent = TRUE,
confidenceShuffle = 100, confidenceThreshold = 0.001)
# plot graph
miic.plot(miic.res, igraphLayout=igraph::layout_on_grid)
# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).
miic.write.network.cytoscape(g = miic.res, file = file.path(tempdir(),"/temp"))
# EXAMPLE OHNOLOGS
data(ohno)
data(ohno_stateOrder)
# execute MIIC (reconstruct graph)
miic.res = miic(inputData = ohno, latent = TRUE, categoryOrder = ohno_stateOrder,
confidenceShuffle = 100, confidenceThreshold = 0.001)
# plot graph
miic.plot(miic.res)
# write graph to graphml format. Note that to correctly visualize
# the network we created the miic style for Cytoscape (http://www.cytoscape.org/).
miic.write.network.cytoscape(g = miic.res, file = file.path(tempdir(),"/temp"))
# }
Run the code above in your browser using DataLab