Learn R Programming

mildsvm (version 0.4.1)

predict.omisvm: Predict method for omisvm object

Description

Predict method for omisvm object

Usage

# S3 method for omisvm
predict(
  object,
  new_data,
  type = c("class", "raw"),
  layer = c("bag", "instance"),
  new_bags = "bag_name",
  ...
)

Value

A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column .pred_class. If type = 'raw', the tibble will have a column .pred.

Arguments

object

An object of class omisvm

new_data

A data frame to predict from. This needs to have all of the features that the data was originally fitted with.

type

If 'class', return predicted values with threshold of 0 as -1 or +1. If 'raw', return the raw predicted scores.

layer

If 'bag', return predictions at the bag level. If 'instance', return predictions at the instance level.

new_bags

A character or character vector. Can specify a singular character that provides the column name for the bag names in new_data (default 'bag_name'). Can also specify a vector of length nrow(new_data) that has bag name for each row.

...

Arguments passed to or from other methods.

Author

Sean Kent

Details

When the object was fitted using the formula method, then the parameters new_bags and new_instances are not necessary, as long as the names match the original function call.

See Also

omisvm() for fitting the omisvm object.

Examples

Run this code
if (require(gurobi)) {
  data("ordmvnorm")
  x <- ordmvnorm[, 3:7]
  y <- ordmvnorm$bag_label
  bags <- ordmvnorm$bag_name

  mdl1 <- omisvm(x, y, bags, weights = NULL)

  # summarize predictions at the bag layer
  library(dplyr)
  df1 <- bind_cols(y = y, bags = bags, as.data.frame(x))
  df1 %>%
    bind_cols(predict(mdl1, df1, new_bags = bags, type = "class")) %>%
    bind_cols(predict(mdl1, df1, new_bags = bags, type = "raw")) %>%
    distinct(y, bags, .pred_class, .pred)
}

Run the code above in your browser using DataLab