# NOT RUN {
set.seed(100)
beta <- runif(5, -5, 5)
trainData <- DGP(40, 3, beta)
testData <- DGP(5, 3, beta)
# default (not use LASSO)
milr_result <- milr(trainData$Z, trainData$X, trainData$ID)
coef(milr_result) # coefficients
fitted(milr_result) # fitted bag labels
fitted(milr_result, type = "instance") # fitted instance labels
summary(milr_result) # summary milr
predict(milr_result, testData$X, testData$ID) # predicted bag labels
predict(milr_result, testData$X, testData$ID, type = "instance") # predicted instance labels
# use BIC to choose penalty (not run)
#milr_result <- milr(trainData$Z, trainData$X, trainData$ID,
# exp(seq(log(0.01), log(50), length = 30)))
#coef(milr_result) # coefficients
#fitted(milr_result) # fitted bag labels
#fitted(milr_result, type = "instance") # fitted instance labels
#summary(milr_result) # summary milr
#predict(milr_result, testData$X, testData$ID) # predicted bag labels
#predict(milr_result, testData$X, testData$ID, type = "instance") # predicted instance labels
# use auto-tuning (not run)
#milr_result <- milr(trainData$Z, trainData$X, trainData$ID, lambda = -1, numLambda = 20)
#coef(milr_result) # coefficients
#fitted(milr_result) # fitted bag labels
#fitted(milr_result, type = "instance") # fitted instance labels
#summary(milr_result) # summary milr
#predict(milr_result, testData$X, testData$ID) # predicted bag labels
#predict(milr_result, testData$X, testData$ID, type = "instance") # predicted instance labels
# use cv in auto-tuning (not run)
#milr_result <- milr(trainData$Z, trainData$X, trainData$ID,
# lambda = -1, numLambda = 20, lambdaCriterion = "deviance")
#coef(milr_result) # coefficients
#fitted(milr_result) # fitted bag labels
#fitted(milr_result, type = "instance") # fitted instance labels
#summary(milr_result) # summary milr
#predict(milr_result, testData$X, testData$ID) # predicted bag labels
#predict(milr_result, testData$X, testData$ID, type = "instance") # predicted instance labels
# }
Run the code above in your browser using DataLab