Learn R Programming

mimi (version 0.1.0)

armijo.alpha: armijo.alpha Performs backtracking line search along a pre-specified search direction

Description

armijo.alpha Performs backtracking line search along a pre-specified search direction

Usage

armijo.alpha(y0, x, alpha, theta, alpha.tmp, theta.tmp, z, w, b = 0.5,
  lambda2, var.type, thresh = 1e-05, nu = 0.1, zeta = 0.9,
  th = 0.9, step = 1)

Arguments

y0

nxp observations matrix

x

(np)xN matrix of covariates

alpha

direction of update for vector of regression parameters of length N

theta

nxp matrix direction of update for matrix of interactions

alpha.tmp

length N vector, current regression parameters

theta.tmp

nxp matrix, current matrix of interactions

z

matrix around which the quadratic approximation is done

w

weights of the quadratic approximation

b

positive number in (0,1) factor by which the step size is reduced

lambda2

positive number, regularization parameter for l1 norm penalty

var.type

vector of length p indicating column types for y (gaussian, binary, poisson)

thresh

positive number, convergence criterion

nu

positive number, backtracking line search parameter, default 0.01

zeta

positive number, backtracking line search parameter, default 0.1

th

positive number, backtracking line search parameter, default 0.1

step

number in (0,1), initial backtracking line search step, default 1

Value

A list with the following elements

alpha

a (nb groups) x (nb variables) matrix containing the group effects

theta a

(nb individuals) x (nb variables) matrix containing the individual effects

objective

a vector containing the value of the objective function at every iteration

step

the step size