
mimi.lr Compute solution of mimi for low-rank model along regularization path
mimi.lr(y, var.type = c("gaussian", "binary", "poisson"), lambda1,
maxit = 100, theta0 = NULL, thresh = 1e-05, trace.it = F,
max.rank = NULL)
nxp observation matrix
vector of length p indicating types of y columns (gaussian, binary, poisson)
positive number, regularization parameter for nuclear norm penalty
integer, maximum number of iterations
matrix of size nxp, initial interactions (optional)
positive number, convergence criterion
boolean, whether convergence information should be printed
integer, maximum rank of interaction matrix
A list with the following elements
the imputed data set
estimated low-rank matrix
# NOT RUN {
y0 <- matrix(rnorm(6 * 10), nrow = 6)
y0[sample(1:50, size = 10)] <- NA
var.type <- rep("gaussian", 10)
res <- mimi.lr(y0, var.type, lambda1 = 0.1)
# }
Run the code above in your browser using DataLab