## Continuing the example from minPtest and generateSNPs:
# generate a data set consisting of 100 subjects and 200 SNPs on 5 genes.
SNP <- c(6,26,54,135,156,186)
BETA <- c(0.9,0.7,1.5,0.5,0.6,0.8)
SNPtoBETA <- matrix(c(SNP,BETA),ncol=2,nrow=6)
colnames(SNPtoBETA) <- c("SNP.item","SNP.beta")
set.seed(191)
sim1 <- generateSNPs(n=100,gene.no=5,block.no=4,block.size=10,p.same=0.9,
p.different=0.75,p.minor=c(0.1,0.4,0.1,0.4),
n.sample=80,SNPtoBETA=SNPtoBETA)
# Cochran Armitage Trend Test without covariates and default permutations.
# Example: Run R sequential
### Seed
set.seed(10)
seed1 <- sample(1:1e7,size=1000)
###
minPtest.object <- minPtest(y=sim1$y, x=sim1$x, SNPtoGene=sim1$SNPtoGene,
seed=seed1)
### Combined plot for permutation-based p-values and marginal p-values.
plot(minPtest.object,type="both",lambda=0.5,gene.name=TRUE)
## Combined plot for permutation-based p-values and marginal
## p-values. Plot permutation-based p-values and significant marginal
## p-values as blue dotted lines and blue points
## plot(minPtest.object,type="both",lambda=0.5,
## gene.name=TRUE,sigCol="blue",sigLty=2)
Run the code above in your browser using DataLab