## ConstructorGenomicMethylSet(gr = GRanges(), Meth = new("matrix"),
Unmeth = new("matrix"), pData = DataFrame(),
annotation = "", preprocessMethod = "")
## Data extraction / Accessors
## S3 method for class 'GenomicMethylSet':
getMeth(object)
## S3 method for class 'GenomicMethylSet':
getUnmeth(object)
## S3 method for class 'GenomicMethylSet':
getBeta(object, type = "", offset = 0, betaThreshold = 0)
## S3 method for class 'GenomicMethylSet':
getM(object, type = "", \dots)
## S3 method for class 'GenomicMethylSet':
getCN(object, \dots)
## S3 method for class 'GenomicMethylSet':
pData(object)
## S3 method for class 'GenomicMethylSet':
sampleNames(object)
## S3 method for class 'GenomicMethylSet':
featureNames(object)
## S3 method for class 'GenomicMethylSet':
annotation(object)
## S3 method for class 'GenomicMethylSet':
preprocessMethod(object)
## S3 method for class 'GenomicMethylSet':
mapToGenome(object, \dots)
GenomicMethylSet.GRanges object.DataFrame or data.frame object.Meth argument.getBeta setting
type="Illumina" sets offset=100 as per Genome Studio.
For getM setting type="" computes M-values as the
logarithm of Meth/Unmeth, otherwise it is computed as
the logit of getBeta(object).betaThreshold and 1-betaThreshold.getM these values gets passed onto
getBeta. For mapToGenome, this is ignored.GenomicMethylSet function with the
arguments outlined above.getBeta and getM see the
deatils section of MethylSet.RangedSummarizedExperiment in the
mapToGenome on a MethylSet.