# NOT RUN {
# Generate a copy of the cll data and construct binary outcome from survival information
cll_bin<-cll
cll_bin$srv5y_s[cll_bin$srv5y>12] <- 0 # Apply administrative censorship at t=12 months
cll_bin$srv5y[cll_bin$srv5y>12] <- 12
cll_bin$Status[cll_bin$srv5y_s==1]<- 1 # Define the new binary "Status" outcome variable
cll_bin$Status[cll_bin$srv5y_s==0] <- 0 # As numeric -> 1:Dead, 0:Alive
cll_bin$Censor <- NULL # Remove survival outcomes
cll_bin$srv5y <- NULL
cll_bin$srv5y_s <- NULL
# Cross-validate prediction using logistic regression in the first 100 samples
# Apply prediction-averaging using 5 imputations, 5 folds and maxit=5.
# Note these settings are only for illustration and should be set to higher values for
# practical use, particularly for nimp.
output<-mipred.cv(Status ~ age10+cyto, family=binomial, data=cll_bin[1:100,-1],
nimp=5, folds=5, mice.options=list(maxit=5))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab