###Parameters from Reckase (2009), p. 153
a <- matrix(c(
.7471, .0250, .1428,
.4595, .0097, .0692,
.8613, .0067, .4040,
1.0141, .0080, .0470,
.5521, .0204, .1482,
1.3547, .0064, .5362,
1.3761, .0861, .4676,
.8525, .0383, .2574,
1.0113, .0055, .2024,
.9212, .0119, .3044,
.0026, .0119, .8036,
.0008, .1905,1.1945,
.0575, .0853, .7077,
.0182, .3307,2.1414,
.0256, .0478, .8551,
.0246, .1496, .9348,
.0262, .2872,1.3561,
.0038, .2229, .8993,
.0039, .4720, .7318,
.0068, .0949, .6416,
.3073, .9704, .0031,
.1819, .4980, .0020,
.4115,1.1136, .2008,
.1536,1.7251, .0345,
.1530, .6688, .0020,
.2890,1.2419, .0220,
.1341,1.4882, .0050,
.0524, .4754, .0012,
.2139, .4612, .0063,
.1761,1.1200, .0870),30,3,byrow=TRUE)
d <- matrix(c(.1826,-.1924,-.4656,-.4336,-.4428,-.5845,-1.0403,
.6431,.0122,.0912,.8082,-.1867,.4533,-1.8398,.4139,
-.3004,-.1824,.5125,1.1342,.0230,.6172,-.1955,-.3668,
-1.7590,-.2434,.4925,-.3410,.2896,.006,.0329),ncol=1)
mu <- c(-.4, -.7, .1)
sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3)
dataset1 <- simdata(a, d, 2000)
dataset2 <- simdata(a, d, 2000, mu = mu, sigma = sigma)
###An example of a mixed item, bifactor loadings pattern with correlated specific factors
# can use factor loadings metric
a <- matrix(c(
.8,.4,NA,
.4,.4,NA,
.7,.4,NA,
.8,NA,.4,
.4,NA,.4,
.7,NA,.4),ncol=3,byrow=TRUE)
#first three items are dichotomous, next two have 4 categories, and the last has 3
d <- matrix(c(
-1.0,NA,NA,
1.5,NA,NA,
0.0,NA,NA,
3.0,2.0,-0.5,
2.5,1.0,-1,
2.0,0.0,NA),ncol=3,byrow=TRUE)
sigma <- diag(3)
sigma[2,3] <- sigma[3,2] <- .25
dataset <- simdata(a,d,1000,sigma=sigma,factor.loads=TRUE)
####Compensatory item example
a <- matrix(c(
1,NA,
1.5,NA,
NA, 1,
NA,1.6,
1.5,.5,
.7, 1), ncol=2,byrow=TRUE)
#notice that the compensatory items have the same number of intercepts as
#factors influencing the item
d <- matrix(c(
-1.0,NA,
1.5,NA,
0.0,NA,
3.0,NA,
2.5,1.0,
2.0, -1),ncol=2,byrow=TRUE)
compdata <- simdata(a,d,3000, partcomp = c(F,F,F,F,T,T))
Run the code above in your browser using DataLab