Last chance! 50% off unlimited learning
Sale ends in
itemfit
calculates the Zh values from Drasgow,
Levine and Williams (1985), $\chi^2$ values for
unidimensional models, and S-X2 statistics for
unidimensional models (Kang & Chen, 2007; Orlando &
Thissen, 2000). For Rasch, partial credit, and rating
scale models infit and outfit statistics are also
produced.itemfit(x, Zh = TRUE, X2 = FALSE, group.size = 150,
mincell = 1, S_X2.tables = FALSE,
empirical.plot = NULL, method = "EAP")
ExploratoryClass
, ConfirmatoryClass
, or
MultipleGroupClass
itemplot
) and overlay with the empirical
$\theta$ groupings. Only applicable when type =
'X2'
. The default is NULL
, ther"EAP"
), Bayes modal
("MAP"
), weighted likelihood estimation
("WLE"
), or maximum likelihood ("ML"
)Kang, T. & Chen, Troy, T. (2007). An investigation of the performance of the generalized S-X2 item-fit index for polytomous IRT models. ACT
Orlando, M. & Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50-64.
Reise, S. P. (1990). A comparison of item- and person-fit methods of assessing model-data fit in IRT. Applied Psychological Measurement, 14, 127-137.
personfit
#make some data
set.seed(1234)
a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1)
d <- matrix(rnorm(20),ncol=1)
items <- rep('dich', 20)
data <- simdata(a,d, 2000, items)
x <- mirt(data, 1)
raschfit <- mirt(data, 1, itemtype='Rasch')
fit <- itemfit(x)
fit
itemfit(x, empirical.plot = 1) #empirical item plot
itemfit(raschfit, method = 'ML') #infit and outfit stats (method='ML' agrees better with eRm package)
#similar example to Kang and Chen 2007
a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1, 1))
d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE)
dat <- simdata(a,d,2000, itemtype = rep('graded', 10)) - 1
head(dat)
mod <- mirt(dat, 1)
itemfit(mod)
mod2 <- mirt(dat, 1, 'Rasch')
itemfit(mod2)
#massive list of tables
tables <- itemfit(mod, S_X2.tables = TRUE)
#observed and expected total score patterns for item 1 (post collapsing)
tables$O[[1]]
tables$E[[1]]
Run the code above in your browser using DataLab