M2(obj, calcNull = TRUE, quadpts = NULL, theta_lim = c(-6, 6),
impute = 0, CI = 0.9, residmat = FALSE, QMC = FALSE, suppress = 1,
...)
createItem<
NULL
,
a suitable value will be chosen based
on the rubric found in fscores
imputeMissing
) when there are missing data present. This requires
a precomputed Theta
input. Will return a data.frame objectquadpts
not specified, 15000 nodes are used by defaultMaydeu-Olivares, A. & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables Psychometrika, 71, 713-732.
dat <- as.matrix(expand.table(LSAT7))
(mod1 <- mirt(dat, 1))
M2(mod1)
M2(mod1, residmat=TRUE) #lower triangle of residual correlation matrix
#M2 imputed with missing data present (run in parallel)
dat[sample(1:prod(dim(dat)), 250)] <- NA
mod2 <- mirt(dat, 1)
mirtCluster()
M2(mod2, impute = 10)
Run the code above in your browser using DataLab