Learn R Programming

mirt (version 1.19)

PLCI.mirt: Compute profiled-likelihood (or posterior) confidence intervals

Description

Computes profiled-likelihood based confidence intervals. Supports the inclusion of equality constraints. Object returns the confidence intervals and whether the respective interval could be found.

Usage

PLCI.mirt(mod, alpha = 0.05, parnum = NULL, search_bound = TRUE,
  step = 0.5, lower = TRUE, upper = TRUE, inf2val = 30, ...)

Arguments

mod

a converged mirt model

alpha

two-tailed alpha critical level

parnum

a numeric vector indicating which parameters to estimate. Use mod2values to determine parameter numbers. If NULL, all possible parameters are used

search_bound

logical; use a fixed grid of values around the ML estimate to determine more suitable optimization bounds? Using this has much better behaviour than setting fixed upper/lower bound values and searching from more extreme ends

step

magnitude of steps used when search_bound is TRUE. Smaller values create more points to search a suitable bound for (up to the lower bound value visible with mod2values)

lower

logical; search for the lower CI?

upper

logical; search for the upper CI?

inf2val

a numeric used to change parameter bounds which are infinity to a finite number. Decreasing this too much may not allow a suitable bound to be located. Default is 30

...

additional arguments to pass to the estimation functions

See Also

boot.mirt

Examples

Run this code
# NOT RUN {
# }
# NOT RUN {
mirtCluster() #use all available cores to estimate CI's in parallel
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1)

result <- PLCI.mirt(mod)
result

mod2 <- mirt(Science, 1)
result2 <- PLCI.mirt(mod2)
result2

#only estimate CI's slopes
sv <- mod2values(mod2)
parnum <- sv$parnum[sv$name == 'a1']
result3 <- PLCI.mirt(mod2, parnum=parnum)
result3

# }

Run the code above in your browser using DataLab