Learn R Programming

mirt (version 1.19)

marginal_rxx: Function to calculate the marginal reliability

Description

Given an estimated model and a prior density function, compute the marginal reliability. This is only available for unidimensional tests.

Usage

marginal_rxx(mod, density = dnorm, theta_lim = c(-6, 6), ...)

Arguments

mod

an object of class 'SingleGroupClass'

density

a density function to use for integration. Default assumes the latent traits are from a normal (Gaussian) distribution

theta_lim

a vector containing the range of integration

...

additional arguments passed to the density function

See Also

empirical_rxx, extract.group, testinfo

Examples

Run this code
# NOT RUN {
# }
# NOT RUN {
dat <- expand.table(deAyala)
mod <- mirt(dat, 1)

# marginal estimate
marginal_rxx(mod)

# empirical estimate (assuming the same prior)
fscores(mod, returnER = TRUE)

# empirical rxx the alternative way, given theta scores and SEs
fs <- fscores(mod, full.scores.SE=TRUE)
head(fs)
empirical_rxx(fs)

# }

Run the code above in your browser using DataLab