Lagrange (i.e., score) test to test whether parameters should be freed from a more constrained baseline model.
lagrange(mod, parnum, SE.type = "Oakes", type = "Richardson", ...)
an estimated model
a vector, or list of vectors, containing one or more parameter
locations/sets of locations to be tested.
See objects returned from mod2values
for the locations
type of information matrix estimator to use. See mirt
for
further details
type of numerical algorithm passed to numerical_deriv
to
obtain the gradient terms
additional arguments to pass to mirt
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. tools:::Rd_expr_doi("10.18637/jss.v048.i06")
wald
if (FALSE) {
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1, 'Rasch')
(values <- mod2values(mod))
# test all fixed slopes individually
parnum <- values$parnum[values$name == 'a1']
lagrange(mod, parnum)
# compare to LR test for first two slopes
mod2 <- mirt(dat, 'F = 1-5
FREE = (1, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)
mod2 <- mirt(dat, 'F = 1-5
FREE = (2, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)
mod2 <- mirt(dat, 'F = 1-5
FREE = (3, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)
# test slopes first two slopes and last three slopes jointly
lagrange(mod, list(parnum[1:2], parnum[3:5]))
# test all 5 slopes and first + last jointly
lagrange(mod, list(parnum[1:5], parnum[c(1, 5)]))
}
Run the code above in your browser using DataLab