powered by
Scree plot for singular values.
screeplot_svd(data, link = "logit", epsilon = 1e-04, K_max = 10)
the data matrix. Entries are either binary or categorical. Missing entries should be NA.
NA
the link function. Possible choices are "logit" and "probit".
the truncation parameter. Default value is 1e-4.
The maximum number of factors contained in data. Default value is 10.
Zhang, H., Chen, Y., & Li, X. (2020). A note on exploratory item factor analysis by singular value decomposition. Psychometrika, 1-15, tools:::Rd_expr_doi("10.1007/s11336-020-09704-7").
require(mirtjml) # load a simulated dataset attach(data_sim) data <- data_sim$response screeplot_svd(data, K_max = 10)
Run the code above in your browser using DataLab