## Not run:
# #########################################################
# ## Multiple Imputation for visualization on the PCA map
# #########################################################
#
# data(orange)
# ## First the number of components has to be chosen
# ## (for the reconstruction step)
# nb <- estim_ncpPCA(orange,ncp.max=4)
#
# ## Multiple Imputation
# resMI <- MIPCA(orange,ncp=2)
#
# ## Visualization on the PCA map
# plot(resMI)
#
# #########################################################
# ## Multiple Imputation for applying statistical methods
# (Bayesian method)
# #########################################################
# data(ozone)
#
# ## First the number of components has to be chosen
# nb <- estim_ncpPCA(ozone[,1:11])
#
# ## Multiple Imputation with Bayesian method
# res.BayesMIPCA<-MIPCA(ozone[,1:11],ncp=2,method.mi="Bayes",verbose=TRUE)
#
# ## Regression on the multiply imputed data set and pooling with mice
# require(mice)
# imp<-prelim(res.mi=res.BayesMIPCA,X=ozone[,1:11])#creating a mids object
# fit <- with(data=imp,exp=lm(maxO3~T9+T12+T15+Ne9+Ne12+Ne15+Vx9+Vx12+Vx15+maxO3v))#analysis
# res.pool<-pool(fit);summary(res.pool)#pooling
#
# ## Diagnostics
# res.over<-Overimpute(res.BayesMIPCA)
# ## End(Not run)
Run the code above in your browser using DataLab