## SBM parameters
N <- 100 # number of nodes
Q <- 3 # number of clusters
pi <- rep(1,Q)/Q # block proportion
theta <- list(mean = diag(.45,Q) + .05 ) # connectivity matrix
## Sampling parameters
samplingParameters <- .75 # the sampling rate
sampling <- "dyad" # the sampling design
## generate a undirected binary SBM with no covariate
sbm <- sbm::sampleSimpleSBM(N, pi, theta)
## Uncomment to set parallel computing with future
## future::plan("multicore", workers = 2)
## Sample some dyads data + Infer SBM with missing data
collection <-
observeNetwork(sbm$networkData, sampling, samplingParameters) %>%
estimateMissSBM(vBlocks = 1:4, sampling = sampling)
plot(collection, "monitoring")
plot(collection, "icl")
collection$ICL
coef(collection$bestModel$fittedSBM, "connectivity")
myModel <- collection$bestModel
plot(myModel, "expected")
plot(myModel, "imputed")
plot(myModel, "meso")
coef(myModel, "sampling")
coef(myModel, "connectivity")
predict(myModel)[1:5, 1:5]
Run the code above in your browser using DataLab