Learn R Programming

mistat (version 1.0-3)

powerCircuitSimulation: The Power Circuit Simulator

Description

A simulator of a voltage conversion power circuit. The target output voltage of the power circuit is 220 volts DC. The circuit consists of 10 resistances labeled A to J, and 3 transistors, labeled K to M. These components can be purchased with different tolerance grades.

Usage

powerCircuitSimulation(rsA = 8200, rsB = 220000, rsC = 1000, rsD = 33000, rsE = 56000, rsF = 5600, rsG = 3300, rsH = 58.5, rsI = 1000, rsJ = 120, trK = 130, trL = 100, trM = 130, tlA = 5, tlB = 10, tlC = 10, tlD = 5, tlE = 5, tlF = 5, tlG = 10, tlH = 5, tlI = 5, tlJ = 5, tlK = 5, tlL = 10, tlM = 5, each = 50, seed = NA)

Arguments

rsA
the resistance ($\Omega$) of A. A single value or a vector of length n.
rsB
the resistance ($\Omega$) of B. A single value or a vector of length n.
rsC
the resistance ($\Omega$) of C. A single value or a vector of length n.
rsD
the resistance ($\Omega$) of D. A single value or a vector of length n.
rsE
the resistance ($\Omega$) of E. A single value or a vector of length n.
rsF
the resistance ($\Omega$) of F. A single value or a vector of length n.
rsG
the resistance ($\Omega$) of G. A single value or a vector of length n.
rsH
the resistance ($\Omega$) of H. A single value or a vector of length n.
rsI
the resistance ($\Omega$) of I. A single value or a vector of length n.
rsJ
the resistance ($\Omega$) of J. A single value or a vector of length n.
trK
the resistance ($\Omega$) of K. A single value or a vector of length n.
trL
the resistance ($\Omega$) of L. A single value or a vector of length n.
trM
the resistance ($\Omega$) of M. A single value or a vector of length n.
tlA
the tolerance of A. It is a number > 0 (e.g. 5% is 5.0)
tlB
the tolerance of B. It is a number > 0 (e.g. 5% is 5.0)
tlC
the tolerance of C. It is a number > 0 (e.g. 5% is 5.0)
tlD
the tolerance of D. It is a number > 0 (e.g. 5% is 5.0)
tlE
the tolerance of E. It is a number > 0 (e.g. 5% is 5.0)
tlF
the tolerance of F. It is a number > 0 (e.g. 5% is 5.0)
tlG
the tolerance of G. It is a number > 0 (e.g. 5% is 5.0)
tlH
the tolerance of H. It is a number > 0 (e.g. 5% is 5.0)
tlI
the tolerance of I. It is a number > 0 (e.g. 5% is 5.0)
tlJ
the tolerance of J. It is a number > 0 (e.g. 5% is 5.0)
tlK
the tolerance of K. It is a number > 0 (e.g. 5% is 5.0)
tlL
the tolerance of L. It is a number > 0 (e.g. 5% is 5.0)
tlM
the tolerance of M. It is a number > 0 (e.g. 5% is 5.0)
each
non-negative integer. Each element of previous parameters is repeated each times.
seed
a single value, interpreted as an integer. If specified make the simulation replicable.

Value

A data frame, a matrix-like structure, with each * n rows and with columns:
rsA numeric
value of rsA rsB
numeric value of rsB
rsC numeric
value of rsC rsD
numeric value of rsD
rsE numeric
value of rsE rsF
numeric value of rsF
rsG numeric
value of rsG rsH
numeric value of rsH
rsI numeric
value of rsI rsJ
numeric value of rsJ
trK numeric
value of trK trL
numeric value of trL
trM numeric
value of trM tlA
numeric value of tlA
tlB numeric
value of tlB tlC
numeric value of tlC
tlD numeric
value of tlD tlE
numeric value of tlE
tlF numeric
value of tlF tlG
numeric value of tlG
tlH numeric
value of tlH tlI
numeric value of tlI
tlJ numeric
value of tlJ tlK
numeric value of tlK
tlL numeric
value of tlL tlM
numeric value of tlM

Details

Factors affect the voltage output $V$ via a chain of nonlinear equations:

$$V = \frac{136.67(a+\frac{b}{Z(10)})+d(c+e)\frac{g}{f}-h}{1+d\frac{e}{f}+b[frac{1}{Z(10)+0.006(1+\frac{13.67}{Z(10)})]+0.08202a}}$$ where $$a = \frac{Z(2)}{Z(1)+Z(2)}$$ $$b=\frac{1}{Z(12)+Z(13)}(Z(3)+\frac{Z(1)Z(2)}{Z(1)+Z(2)})+Z(9)$$ $$c=Z(5)+Z(7)/2$$ $$d=Z(11)\frac{Z(1)Z(2)}{Z(1)+Z(2)}$$ $$e=Z(6)+Z(7)/2$$ $$f=(c+e)(1+Z(11))Z(8)+ce$$ $$g=0.6+Z(8)$$ $$h=1.2$$ with $Z(1),\ldots,Z(10)$ resistances in $\Omega$ of the 10 resistances and $Z(11),Z(12),Z(13)$ are the $h_{FE}$ values of three transistors.

References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

See Also

pistonSimulation, simulationGroup

Examples

Run this code
powerCircuitSimulation(seed=123, each=3)

Run the code above in your browser using DataLab